Difference between revisions of "2010 AMC 10A Problems/Problem 5"

(Created page with '144')
 
Line 1: Line 1:
144
+
== Problem 5 ==
 +
The area of a circle whose circumference is <math>24\pi</math> is <math>k\pi</math>. What is the value of <math>k</math>?
 +
 
 +
<math>
 +
\mathrm{(A)}\ 6
 +
\qquad
 +
\mathrm{(B)}\ 12
 +
\qquad
 +
\mathrm{(C)}\ 24
 +
\qquad
 +
\mathrm{(D)}\ 36
 +
\qquad
 +
\mathrm{(E)}\ 144
 +
</math>
 +
 
 +
==Solution==
 +
 
 +
If the circumference of a circle is <math>24\pi</math>, the radius would be <math>12</math>. Since the area of a circle is <math>\pi r^2</math>, the area is <math>144\pi</math>.

Revision as of 15:45, 20 December 2010

Problem 5

The area of a circle whose circumference is $24\pi$ is $k\pi$. What is the value of $k$?

$\mathrm{(A)}\ 6 \qquad \mathrm{(B)}\ 12 \qquad \mathrm{(C)}\ 24 \qquad \mathrm{(D)}\ 36 \qquad \mathrm{(E)}\ 144$

Solution

If the circumference of a circle is $24\pi$, the radius would be $12$. Since the area of a circle is $\pi r^2$, the area is $144\pi$.