Difference between revisions of "Mobius function"
Line 23: | Line 23: | ||
One unique fact about the Mobius function, which leads to the Mobius inversion formula, is that | One unique fact about the Mobius function, which leads to the Mobius inversion formula, is that | ||
− | <cmath>\sum_{d|n} mu(d) = \begin{cases} 1 & n = 1, \\ | + | <cmath>\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1, \\ 0 & \text{otherwise}. \end{cases}</cmath> |
+ | |||
+ | The Mobius function is also closely related to the [[Riemann zeta function]], as | ||
+ | <cmath>\frac{1}{\zeta(s)} = \sum \frac{\mu(k)}{n^s}.</cmath> |
Revision as of 18:44, 26 January 2011
The Mobius function is a multiplicative number theoretic function defined as follows: In addition, .
The Mobius function is useful for a variety of reasons.
First, it conveniently encodes Principle of Inclusion-Exclusion. For example, to count the number of positive integers less than or equal to and relatively prime to , we have
more succinctly expressed as
One unique fact about the Mobius function, which leads to the Mobius inversion formula, is that
The Mobius function is also closely related to the Riemann zeta function, as