Difference between revisions of "Logarithm"

(fixed TeX; \log should be used for logs)
m (log>\log)
Line 7: Line 7:
 
These hold for all logarithms.
 
These hold for all logarithms.
 
*<math>\log_a b^n=n\log_a b</math>
 
*<math>\log_a b^n=n\log_a b</math>
*<math>log_a b+ \log_a c=\log_a bc</math>
+
*<math>\log_a b+ \log_a c=\log_a bc</math>
 
*<math>\log_a b-\log_a c=\log_a \frac{b}{c}</math>
 
*<math>\log_a b-\log_a c=\log_a \frac{b}{c}</math>
 
*<math>(\log_a b)(\log_c d)= (\log_a d)(\log_c b)</math>
 
*<math>(\log_a b)(\log_c d)= (\log_a d)(\log_c b)</math>
 
*<math>\frac{\log_a b}{\log_a c}=\log_c b</math>
 
*<math>\frac{\log_a b}{\log_a c}=\log_c b</math>
 
*<math>\log_a^n b^n=\log_a b</math>
 
*<math>\log_a^n b^n=\log_a b</math>

Revision as of 09:03, 22 June 2006

A logarithm is a shorthand way of expressing exponentional notation.

Introductory

The general form for a logarithm can be expressed as $\log_x y=z$ which means $x^z=y$. We would read this as "The logarithm of y base x is z". We have $3^3=27$. To express this in Logarithmic notation, we would write it as $\log_3 27=3$. When a logarithm has no base, it is assumed to be base 10.

Logarithmic Properties

These hold for all logarithms.

  • $\log_a b^n=n\log_a b$
  • $\log_a b+ \log_a c=\log_a bc$
  • $\log_a b-\log_a c=\log_a \frac{b}{c}$
  • $(\log_a b)(\log_c d)= (\log_a d)(\log_c b)$
  • $\frac{\log_a b}{\log_a c}=\log_c b$
  • $\log_a^n b^n=\log_a b$