Difference between revisions of "Vieta's Formulas"

m (see also)
Line 14: Line 14:
 
[needs to be added]
 
[needs to be added]
  
== Related Links ==
+
=== See also ===
 +
 
 +
* [[Algebra]]
 +
* [[Polynomials]]
 +
* [[Newton's identities]]
 +
 
 +
=== Related Links ===
 
[http://mathworld.wolfram.com/VietasFormulas.html Mathworld's Article]
 
[http://mathworld.wolfram.com/VietasFormulas.html Mathworld's Article]

Revision as of 09:42, 22 June 2006

Background

Let $P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0$, where the coefficient of $x^{i}$ is ${a}_i$. As a consequence of the Fundamental Theorem of Algebra, we can also write $P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)$, where ${r}_i$ are the roots of $P(x)$.

Also, let ${\sigma}_k$ be the ${}{k}$th symmetric sum.

Statement

$\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}$, for ${}1\le k\le {n}$.

Proof

[needs to be added]

See also

Related Links

Mathworld's Article