Difference between revisions of "2011 USAMO Problems/Problem 5"
(→Solution) |
|||
Line 7: | Line 7: | ||
First note that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if the altitudes from <math>Q_1</math> and <math>Q_2</math> to <math>\overline{AB}</math> are the same, or <math>|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2</math>. Similarly <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math> iff <math>|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2</math>. | First note that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if the altitudes from <math>Q_1</math> and <math>Q_2</math> to <math>\overline{AB}</math> are the same, or <math>|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2</math>. Similarly <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math> iff <math>|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2</math>. | ||
− | If we define <math>S =\ | + | |
+ | If we define <math>S =\frac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\frac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}</math>, then we are done if we can show that S=1. | ||
+ | |||
+ | |||
+ | By the law of sines, <math>\frac{|Q_1B|}{|Q_1C|}=\frac{\sin\angle Q_1CB}{\sin\angle Q_1BC}</math> and <math>\frac{|Q_2D|}{|Q_2A|}=\frac{\sin\angle Q_2AD}{\sin\angle Q_2DA}</math>. | ||
+ | |||
+ | |||
+ | So, <math>S=\frac{\sin \angle ABQ_1}{\sin \angle BAQ_2}\frac{\sin \angle CDQ_2}{\sin \angle DCQ_1}\frac{\sin \angle BCQ_1}{\sin \angle CBQ_1}\frac{\sin \angle DAQ_2}{\sin \angle ADQ_2}</math> | ||
==See also== | ==See also== |
Revision as of 15:23, 8 June 2011
Problem
Let be a given point inside quadrilateral . Points and are located within such that , , , . Prove that if and only if .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
First note that if and only if the altitudes from and to are the same, or . Similarly iff .
If we define , then we are done if we can show that S=1.
By the law of sines, and .
So,
See also
2011 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |