Difference between revisions of "Circumradius"

m
m
Line 4: Line 4:
  
 
==Formula for a Triangle==
 
==Formula for a Triangle==
Let <math>a, b</math> and <math>c</math> denote the triangle's three sides, and let <math>A</math> denote the area of the triangle. Then, the measure of the of the circumradius of the triangle is simply <math>\frac{abc}{4A}</math>
+
Let <math>a, b</math> and <math>c</math> denote the triangle's three sides, and let <math>A</math> denote the area of the triangle. Then, the measure of the of the circumradius of the triangle is simply <math>R=\frac{abc}{4A}</math>
 +
 
 +
Also, <math>A=\frac{abc}{4R}</math>
  
 
==Euler's Theorem for a Triangle==
 
==Euler's Theorem for a Triangle==

Revision as of 21:38, 17 October 2011

This article is a stub. Help us out by expanding it.

The circumradius of a cyclic polygon is the radius of the cirumscribed circle of that polygon. For a triangle, it is the measure of the radius of the circle that circumscribes the triangle. Since every triangle is cyclic, every triangle has a circumscribed circle, or a circumcircle.

Formula for a Triangle

Let $a, b$ and $c$ denote the triangle's three sides, and let $A$ denote the area of the triangle. Then, the measure of the of the circumradius of the triangle is simply $R=\frac{abc}{4A}$

Also, $A=\frac{abc}{4R}$

Euler's Theorem for a Triangle

Let $\triangle ABC$ have circumradius $R$ and inradius $r$. Let $d$ be the distance between the circumcenter and the incenter. Then we have \[d^2=R(R-2r)\]

See also