Difference between revisions of "Geometric sequence"
ComplexZeta (talk | contribs) m (→Infinite Geometric Sequences: Too much college brainwashing makes it feel wrong to call that a completely rigorous proof) |
m (→Infinite Geometric Sequences) |
||
Line 47: | Line 47: | ||
<center><math>S=\frac{a_0}{1-r}</math></center> | <center><math>S=\frac{a_0}{1-r}</math></center> | ||
− | This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate | + | This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate infinite sequences. In fact, the same method can be used to calculate the sum of a finite geometric sequence (given above). |
One common instance of summing infinite geometric sequences is the [[decimal expansion]] of most [[rational number]]s. For instance, <math>0.33333\ldots = \frac 3{10} + \frac3{100} + \frac3{1000} + \frac3{10000} + \ldots</math> has first term <math>a_0 = \frac 3{10}</math> and common ratio <math>\frac1{10}</math>, so the infinite sum has value <math>S = \frac{\frac3{10}}{1-\frac1{10}} = \frac13</math>, just as we would have expected. | One common instance of summing infinite geometric sequences is the [[decimal expansion]] of most [[rational number]]s. For instance, <math>0.33333\ldots = \frac 3{10} + \frac3{100} + \frac3{1000} + \frac3{10000} + \ldots</math> has first term <math>a_0 = \frac 3{10}</math> and common ratio <math>\frac1{10}</math>, so the infinite sum has value <math>S = \frac{\frac3{10}}{1-\frac1{10}} = \frac13</math>, just as we would have expected. |
Revision as of 15:33, 23 June 2006
Contents
[hide]Definition
A geometric sequence is a sequence of numbers in which each term is a fixed multiple of the previous term. For example: 1, 2, 4, 8, 16, 32, ... is a geometric sequence because each term is twice the previous term. In this case, 2 is called the common ratio of the sequence. More formally, a geometric sequence may be defined recursively by:

with a fixed and common ratio
. Using this definition, the
th term has the closed-form:

Summing a Geometric Sequence
The sum of the first terms of a geometric sequence is given by

where is the first term in the sequence, and
is the common ratio.
Infinite Geometric Sequences
An infinite geometric sequence is a geometric sequence with an infinite number of terms. If the common ratio is small, the sum of the terms will approach a fixed limit. In this case, "small" means . We say that the sum of the terms of this sequence is a convergent sum.
For instance, the series , sums to 2. The general formula for the sum of such a sequence is:

Where is the first term in the sequence, and
is the common ratio.
"Proof": Let the sequence be

Multiplying by yields,

We subtract these two equations to obtain:

There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide to get

thus,

This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate infinite sequences. In fact, the same method can be used to calculate the sum of a finite geometric sequence (given above).
One common instance of summing infinite geometric sequences is the decimal expansion of most rational numbers. For instance, has first term
and common ratio
, so the infinite sum has value
, just as we would have expected.