Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 10"

Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Find the number of solutions, in degrees, to the equation <math>\displaystyle \sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x,</math> where <math>\displaystyle 0^\circ \le x^\circ \le 2007^\circ.</math>
+
Find the number of solutions, in degrees, to the equation <math>\sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x,</math> where <math>0^\circ \le x^\circ \le 2007^\circ.</math>
 
==Solution==
 
==Solution==
 
{{solution}}
 
{{solution}}
Line 6: Line 6:
 
----
 
----
  
*[[Mock AIME 2 2006-2007/Problem 9 | Previous Problem]]
+
*[[Mock AIME 2 2006-2007 Problems/Problem 9 | Previous Problem]]
  
*[[Mock AIME 2 2006-2007/Problem 11 | Next Problem]]
+
*[[Mock AIME 2 2006-2007 Problems/Problem 11 | Next Problem]]
  
 
*[[Mock AIME 2 2006-2007]]
 
*[[Mock AIME 2 2006-2007]]

Revision as of 14:33, 3 April 2012

Problem

Find the number of solutions, in degrees, to the equation $\sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x,$ where $0^\circ \le x^\circ \le 2007^\circ.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.