Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 1"

m
Line 6: Line 6:
 
From <math>4c = \frac{d}4</math> we have that 16 [[divisor | divides]] <math>d</math>.  From <math>a + 4 = \frac d4</math> we have <math>d \geq 20</math>.  Minimizing <math>d</math> minimizes <math>a, b</math> and <math>c</math> and consequently minimizes our dragon.  The smallest possible choice is <math>d = 32</math>, from which <math>a = 4, b = 12</math> and <math>c = 2</math> so our desired number is <math>a + b + c + d = 4 + 12 + 2 + 32 = 050</math>.
 
From <math>4c = \frac{d}4</math> we have that 16 [[divisor | divides]] <math>d</math>.  From <math>a + 4 = \frac d4</math> we have <math>d \geq 20</math>.  Minimizing <math>d</math> minimizes <math>a, b</math> and <math>c</math> and consequently minimizes our dragon.  The smallest possible choice is <math>d = 32</math>, from which <math>a = 4, b = 12</math> and <math>c = 2</math> so our desired number is <math>a + b + c + d = 4 + 12 + 2 + 32 = 050</math>.
  
----
+
==See Also==
 
+
{{Mock AIME box|year=2006-2007|n=2|before=First Question|num-a=2}}
*[[Mock AIME 2 2006-2007 Problems/Problem 2 | Next Problem]]
 
 
 
*[[Mock AIME 2 2006-2007]]
 
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 09:49, 4 April 2012

Problem

A positive integer is called a dragon if it can be written as the sum of four positive integers $a,b,c,$ and $d$ such that $a+4=b-4=4c=d/4.$ Find the smallest dragon.

Solution

From $4c = \frac{d}4$ we have that 16 divides $d$. From $a + 4 = \frac d4$ we have $d \geq 20$. Minimizing $d$ minimizes $a, b$ and $c$ and consequently minimizes our dragon. The smallest possible choice is $d = 32$, from which $a = 4, b = 12$ and $c = 2$ so our desired number is $a + b + c + d = 4 + 12 + 2 + 32 = 050$.

See Also

Mock AIME 2 2006-2007 (Problems, Source)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15