Difference between revisions of "1980 AHSME Problems/Problem 2"

(Created page with "==Problem 2== The degree of <math>(x^2+1)^4 (x^3+1)^3</math> as a polynomial in <math>x</math> is <math>\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{...")
 
Line 1: Line 1:
==Problem 2==
+
==Problem==
  
 
The degree of <math>(x^2+1)^4 (x^3+1)^3</math> as a polynomial in <math>x</math> is
 
The degree of <math>(x^2+1)^4 (x^3+1)^3</math> as a polynomial in <math>x</math> is
 
<math>\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{(D)} \ 17 \qquad \text{(E)} \ 72</math>
 
<math>\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{(D)} \ 17 \qquad \text{(E)} \ 72</math>

Revision as of 12:07, 16 July 2012

Problem

The degree of $(x^2+1)^4 (x^3+1)^3$ as a polynomial in $x$ is $\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{(D)} \ 17 \qquad \text{(E)} \ 72$