Difference between revisions of "User talk:Baijiangchen"
Line 15: | Line 15: | ||
<math>W(x+1)=\sum_{i=1}^{x+1}(\binom{i-1}{x}W(i-1)(x-i+1)!(2^{x-i+1}))</math> | <math>W(x+1)=\sum_{i=1}^{x+1}(\binom{i-1}{x}W(i-1)(x-i+1)!(2^{x-i+1}))</math> | ||
+ | |||
<math>=\sum_{i=1}^{x+1}(\binom{i-1}{x-1}(\frac{x-i+1}{x})W(i-1)(x-i)!(x-i+1)(2^{x-i})(2))</math> | <math>=\sum_{i=1}^{x+1}(\binom{i-1}{x-1}(\frac{x-i+1}{x})W(i-1)(x-i)!(x-i+1)(2^{x-i})(2))</math> | ||
+ | |||
<math>=\sum_{i=1}^{x+1}(\binom{i-1}{x-1}W(i-1)(x-i)!(x-i+1)(2^{x-i})(2x))</math> | <math>=\sum_{i=1}^{x+1}(\binom{i-1}{x-1}W(i-1)(x-i)!(x-i+1)(2^{x-i})(2x))</math> | ||
+ | |||
<math>=2x\sum_{i=1}^{x+1}(\binom{i-1}{x-1}W(i-1)(x-i)!(x-i+1)(2^{x-i}))</math> | <math>=2x\sum_{i=1}^{x+1}(\binom{i-1}{x-1}W(i-1)(x-i)!(x-i+1)(2^{x-i}))</math> | ||
+ | |||
<math>=2x[W(n)=\sum_{i=1}^{x}(\binom{i-1}{x-1}W(i-1)(x-i)!(2^{x-i}))+\binom{x}{x-1}W(x)(1)!(2)]</math> | <math>=2x[W(n)=\sum_{i=1}^{x}(\binom{i-1}{x-1}W(i-1)(x-i)!(2^{x-i}))+\binom{x}{x-1}W(x)(1)!(2)]</math> | ||
+ | |||
<math>=2x[(2x-1)!!+\binom{x}{x-1}W(x)(1)!(2)]</math> | <math>=2x[(2x-1)!!+\binom{x}{x-1}W(x)(1)!(2)]</math> | ||
+ | |||
And this is where I'm stuck. | And this is where I'm stuck. |
Revision as of 23:40, 21 July 2012
If:
Then:
Sam's stuff
Let
Assume that for some integer , . We intend to show that .
And this is where I'm stuck.