Difference between revisions of "Chebyshev theta function"
Missionary (talk | contribs) |
Missionary (talk | contribs) |
||
Line 29: | Line 29: | ||
= \vartheta(x) - \vartheta(\lfloor n/2 \rfloor) | = \vartheta(x) - \vartheta(\lfloor n/2 \rfloor) | ||
\ge \vartheta(x) - 2\lfloor n/2 \rfloor \log 2 \ge \vartheta(x) - x \log 2 , </cmath> | \ge \vartheta(x) - 2\lfloor n/2 \rfloor \log 2 \ge \vartheta(x) - x \log 2 , </cmath> | ||
− | by inductive hypothesis. Therefore | + | by the inductive hypothesis. Therefore |
<cmath> 2x \log 2 \ge \vartheta(x), </cmath> | <cmath> 2x \log 2 \ge \vartheta(x), </cmath> | ||
as desired. <math>\blacksquare</math> | as desired. <math>\blacksquare</math> |
Revision as of 18:59, 18 September 2012
Chebyshev's theta function, denoted or sometimes , is a function of use in analytic number theory. It is defined thus, for real : where the sum ranges over all primes less than .
Estimates of the function
The function is asymptotically equivalent to (the prime counting function) and . This result is the Prime Number Theorem, and all known proofs are rather involved.
However, we can obtain a simpler bound on .
Theorem (Chebyshev). If , then .
Proof. We induct on . For our base cases, we note that for , we have .
Now suppose that . Let . Then so by the inductive hypothesis. Therefore as desired.