Difference between revisions of "Prime Number Theorem"
(→Chebyshev's estimates) |
(→Chebyshev's estimates) |
||
Line 39: | Line 39: | ||
But then <math>\pi(n)\le 2\ln 4\frac{n}{\ln n}+\pi(\sqrt n)\le 2\ln 4\,\frac{n}{\ln n}+\sqrt n< 4\frac{n}{\ln n}</math> for large <math>n</math>. | But then <math>\pi(n)\le 2\ln 4\frac{n}{\ln n}+\pi(\sqrt n)\le 2\ln 4\,\frac{n}{\ln n}+\sqrt n< 4\frac{n}{\ln n}</math> for large <math>n</math>. | ||
---- | ---- | ||
− | Now let us turn to elementary lower bounds. They are actually not required for the proof of the prime number theorem outlined below, but they may be of some independent interest, especially to those who haven't taken advanced courses in analysis by this moment and may be unable to go through the entire proof yet. We | + | Now let us turn to elementary lower bounds. They are actually not required for the proof of the prime number theorem outlined below, but they may be of some independent interest, especially to those who haven't taken advanced courses in analysis by this moment and may be unable to go through the entire proof yet. |
+ | ===Lower bound for the product of primes=== | ||
+ | ====Lemma 3==== | ||
+ | <math>\prod_{p\le n}p\ge \frac{2^{n}}{(n+1)\cdot n^{\sqrt{n}}}</math>. | ||
+ | |||
+ | ====Proof of Lemma 3==== | ||
+ | The idea is again to investigate the [[prime factorization]] of | ||
+ | <math>{n\choose \lfloor \frac n2 \rfloor}</math>. We shall give the proof for odd <math>n=2m+1</math> (the case of even <math>n</math> is similar). Recall that the power in which a prime number <math>p</math> appears in the prime factorization of <math>\ell!</math> equals <math>\left\lfloor \frac \ell{p}\right\rfloor+\left\lfloor \frac \ell{p^2}\right\rfloor+\left\lfloor \frac \ell{p^3}\right\rfloor+\dots</math> (see [[factorial]] for the proof). | ||
+ | Therefore, the power in which <math>p</math> appears in the prime factorization of <math>{n\choose m}</math> equals <math>\sum_{k\ge 1}\left(\left\lfloor \frac n{p^k}\right\rfloor-\left\lfloor \frac m{p^k}\right\rfloor-\left\lfloor \frac {m+1}{p^k}\right\rfloor\right)</math> Note that each term in the last sum does not exceed <math>1</math> and the number of non-zero terms does not exceed <math>\left\lfloor {\log_p n}\right\rfloor</math>, which is <math>1</math> for all <math>\sqrt n<p\le n</math>. | ||
+ | Hence | ||
+ | |||
+ | <math>{n\choose m}\le \left(\prod_{\sqrt n<p\le n}p\right)\cdot\left(\prod_{p\le \sqrt n}p^{\lfloor\log_p n\rfloor}\right)\le \left(\prod_{p\le n}p\right)\cdot n^{\pi(\sqrt n)}\le n^{\sqrt n}\cdot \prod_{p\le n}p</math>. | ||
+ | |||
+ | On the other hand, <math>{n\choose m}</math> is the largest of the <math>n+1</math> binomial coefficients whose sum is <math>2^n</math>. Thus, <math>{n\choose m}\ge \frac{2^n}{(n+1)}</math> whence the estimate of the lemma. | ||
+ | ===Lower bound for the number of primes=== | ||
+ | ====Lemma 4==== | ||
+ | <math>\pi(n)\ge \frac 12\,\frac n{\ln n}</math> for large <math>n</math> | ||
+ | |||
+ | ====Proof of Lemma 2==== | ||
+ | Rewrite the inequality of Lemma 3 as <math>\sum_{p\le n}\ln p\ge n\ln 2-\ln(n+1)-\sqrt n\,\ln n > \frac 12 n</math> for large <math>n</math>. | ||
+ | But the left hand side does not exceed <math>\pi(n)\ln n</math> whence the lemma. | ||
+ | |||
+ | ---- | ||
+ | We haven't proved the prime number theorem yet, but we showed that | ||
+ | <math>\frac 12\,\frac n{\ln n}\le \pi(n)\le 4\,\frac n{\ln n}</math> | ||
+ | for all sufficiently large <math>n</math>. For many readers it is probably a good idea to stop here and to proceed to [[Bertrand's postulate]]. The material below this point requires good knowledge of analysis and is, probably, accessible to college students only. | ||
+ | |||
+ | ''To be continued'' |
Revision as of 13:19, 27 June 2006
This article is a stub. Help us out by expanding it.
Contents
Introduction
The aim of this article is to present the proof of the prime number theorem that says that the number of primes not exceeding is approximately or, more precisely, that
Unfortunately, all known proofs of the prime number theorem are quite involved and require knowledge of some college level material.
We shall start with some elementary observations due to Chebyshev.
Chebyshev's estimates
The key observation is that is divisible by all primes satisfying . Indeed, every such prime appears in the numerator and does not appear in the denominator . Thus, (from now on, will always stand for a prime number, so, to shorten the notation, we will not explicitly write " is prime" in the descriptions of sum and product ranges). Similarly, considering , we see that (the last inequality holds because and ). Now we are ready to prove the
Upper bound for the product of primes
Lemma 1
For every positive integer , we have
Proof of Lemma 1
Induction on . The base is obvious. Suppose now that the statement holds for all numbers strictly less than . If is even, then
If is odd, then
From this lemma we can easily derive the
Upper bound for the number of primes
Lemma 2
for large
Proof of Lemma 2
Rewrite the inequality of Lemma 1 as . It follows that . But then for large .
Now let us turn to elementary lower bounds. They are actually not required for the proof of the prime number theorem outlined below, but they may be of some independent interest, especially to those who haven't taken advanced courses in analysis by this moment and may be unable to go through the entire proof yet.
Lower bound for the product of primes
Lemma 3
.
Proof of Lemma 3
The idea is again to investigate the prime factorization of . We shall give the proof for odd (the case of even is similar). Recall that the power in which a prime number appears in the prime factorization of equals (see factorial for the proof). Therefore, the power in which appears in the prime factorization of equals Note that each term in the last sum does not exceed and the number of non-zero terms does not exceed , which is for all . Hence
.
On the other hand, is the largest of the binomial coefficients whose sum is . Thus, whence the estimate of the lemma.
Lower bound for the number of primes
Lemma 4
for large
Proof of Lemma 2
Rewrite the inequality of Lemma 3 as for large . But the left hand side does not exceed whence the lemma.
We haven't proved the prime number theorem yet, but we showed that for all sufficiently large . For many readers it is probably a good idea to stop here and to proceed to Bertrand's postulate. The material below this point requires good knowledge of analysis and is, probably, accessible to college students only.
To be continued