Difference between revisions of "2004 AMC 8 Problems/Problem 8"

(Created page with "== Problem == Find the number of two-digit positive integers whose digits total <math>7</math>. <math> \mathrm{(A)\ 6 }\qquad\mathrm{(B)\ 7 }\qquad\mathrm{(C)\ 8 }\qquad\mathrm{...")
 
Line 2: Line 2:
 
Find the number of two-digit positive integers whose digits total <math>7</math>.
 
Find the number of two-digit positive integers whose digits total <math>7</math>.
  
<math> \mathrm{(A)\ 6 }\qquad\mathrm{(B)\ 7 }\qquad\mathrm{(C)\ 8 }\qquad\mathrm{(D)\ 9 }\qquad\mathrm{(E)\ 10 } </math>
+
<math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10</math>
  
 
== Solution ==
 
== Solution ==
The numbers are <math>16, 25, 34, 43, 52, 61, 70</math> which gives us a total of <math>7</math>. <math>\boxed{\textbf{(B)}\ 7}</math>
+
The numbers are <math>16, 25, 34, 43, 52, 61, 70</math> which gives us a total of <math>\boxed{\textbf{(B)}\ 7}</math>.
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2004|num-b=7|num-a=9}}

Revision as of 03:36, 24 December 2012

Problem

Find the number of two-digit positive integers whose digits total $7$.

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

The numbers are $16, 25, 34, 43, 52, 61, 70$ which gives us a total of $\boxed{\textbf{(B)}\ 7}$.

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions