Difference between revisions of "2013 AIME I Problems/Problem 8"

(Solution)
(Problem 8)
Line 1: Line 1:
 
== Problem 8 ==
 
== Problem 8 ==
The domain of the function f(x) = arcsin(log<math>_{m}</math>(nx)) is a closed interval of length <math>\frac{1}{2013}</math> , where <math>m</math> and <math>n</math> are positive integers and <math>m>1</math>. Find the remainder when the smallest possible sum <math>m+n</math> is divided by 1000.
+
The domain of the function <math>f(x) = \arcsin(\log_{m}(nx))</math> is a closed interval of length <math>\frac{1}{2013}</math> , where <math>m</math> and <math>n</math> are positive integers and <math>m>1</math>. Find the remainder when the smallest possible sum <math>m+n</math> is divided by 1000.
 
 
  
 
== Solution ==
 
== Solution ==

Revision as of 19:09, 16 March 2013

Problem 8

The domain of the function $f(x) = \arcsin(\log_{m}(nx))$ is a closed interval of length $\frac{1}{2013}$ , where $m$ and $n$ are positive integers and $m>1$. Find the remainder when the smallest possible sum $m+n$ is divided by 1000.

Solution

The domain of the arcsin function is $[-1, 1]$, so $-1 \le log_{m}(nx) \le 1$.

$\frac{1}{m} \le nx \le m$

$\frac{1}{mn} \le x \le \frac{m}{n}$

$\frac{m}{n} - \frac{1}{mn} = \frac{1}{2013}$

$n = 2013m - \frac{2013}{m}$

For $n$ to be an integer, $m$ must divide $2013$, and $m > 1$. To minimize $n$, $m$ should be as small as possible because increasing $m$ will decrease $\frac{2013}{m}$ , the amount you are subtracting, and increase $2013m$ , the amount you are adding; this also leads to a small $n$ which clearly minimizes $m+n$.

We let $m$ equal 3, the smallest factor of $2013$ that isn't $1$. Then we have $n = 2013*3 - \frac{2013}{3} = 6039 - 671 = 5368$

$m + n = 5371$, so the answer is $\boxed{371}$.