Difference between revisions of "2003 AMC 12B Problems/Problem 11"

(Created page with "Cassandra sets her watch to the correct time at noon. At the actual time of 1:00 PM, she notices that her watch reads 12:57 and 36 seconds. Assuming that her watch loses time at ...")
 
Line 5: Line 5:
 
\text {(A) 10:22 PM and 24 seconds}  \qquad \text {(B) 10:24 PM} \qquad \text {(C) 10:25 PM}  \qquad \text {(D) 10:27 PM}  \qquad \text {(E) 10:30 PM}  
 
\text {(A) 10:22 PM and 24 seconds}  \qquad \text {(B) 10:24 PM} \qquad \text {(C) 10:25 PM}  \qquad \text {(D) 10:27 PM}  \qquad \text {(E) 10:30 PM}  
 
</math>
 
</math>
 +
{{MAA Notice}}

Revision as of 09:25, 4 July 2013

Cassandra sets her watch to the correct time at noon. At the actual time of 1:00 PM, she notices that her watch reads 12:57 and 36 seconds. Assuming that her watch loses time at a constant rate, what will be the actual time when her watch first reads 10:00 PM?

$\text {(A) 10:22 PM and 24 seconds}  \qquad \text {(B) 10:24 PM} \qquad \text {(C) 10:25 PM}  \qquad \text {(D) 10:27 PM}  \qquad \text {(E) 10:30 PM}$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png