Difference between revisions of "2007 AMC 10B Problems/Problem 19"

m (+Solution 2+)
Line 75: Line 75:
  
 
{{AMC10 box|year=2007|ab=B|num-b=18|num-a=20}}
 
{{AMC10 box|year=2007|ab=B|num-b=18|num-a=20}}
 +
{{MAA Notice}}

Revision as of 11:22, 4 July 2013

Problem

The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by $4,$ and the second number is divided by $5.$ The first remainder designates a column, and the second remainder designates a row on the checkerboard shown. What is the probability that the pair of numbers designates a shaded square?

[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  real r=2; pair O=(0,0); pair A=(0,2), A1=(0,-2); draw(A--A1); pair B=(sqrt(3),1), B1=(-sqrt(3),-1); draw(B--B1); pair C=(sqrt(3),-1), C1=(-sqrt(3),1); draw(C--C1); path circleO=Circle(O,r); draw(circleO); pair[] ps={O}; dot(ps); label("$6$",(-0.6,1)); label("$1$",(0.6,1)); label("$2$",(0.6,-1)); label("$9$",(-0.6,-1)); label("$7$",(1.2,0)); label("$3$",(-1.2,0));  label("$pointer$",(-4,0)); draw((-5.5,0.5)--(-5.5,-0.5)--(-3,-0.5)--(-2.5,0)--(-3,0.5)--cycle);  fill((4,0)--(4,1)--(5,1)--(5,0)--cycle,gray); fill((6,2)--(6,1)--(5,1)--(5,2)--cycle,gray); fill((6,0)--(6,-1)--(5,-1)--(5,0)--cycle,gray); fill((6,0)--(6,1)--(7,1)--(7,0)--cycle,gray); fill((4,-1)--(5,-1)--(5,-2)--(4,-2)--cycle,gray); fill((6,-1)--(7,-1)--(7,-2)--(6,-2)--cycle,gray); draw((4,2)--(7,2)--(7,-2)--(4,-2)--cycle); draw((4,1)--(7,1)); draw((4,0)--(7,0)); draw((4,-1)--(7,-1)); draw((5,2)--(5,-2)); draw((6,2)--(6,-2)); label("$1$",midpoint((4,-1)--(4,-2)),W); label("$2$",midpoint((4,0)--(4,-1)),W); label("$3$",midpoint((4,1)--(4,0)),W); label("$4$",midpoint((4,2)--(4,1)),W); label("$1$",midpoint((4,-2)--(5,-2)),S); label("$2$",midpoint((5,-2)--(6,-2)),S); label("$3$",midpoint((7,-2)--(6,-2)),S); [/asy]

$\textbf{(A) } \frac{1}{3} \qquad\textbf{(B) } \frac{4}{9} \qquad\textbf{(C) } \frac{1}{2} \qquad\textbf{(D) } \frac{5}{9} \qquad\textbf{(E) } \frac{2}{3}$

Solution

Solution 1

When dividing each number on the wheel by $4,$ the remainders are $1, 1, 2, 2, 3,$ and $3.$ Each column on the checkerboard is equally likely to be chosen.

When dividing each number on the wheel by $5,$ the remainders are $1, 1, 2, 2, 3,$ and $4.$

The probability that a shaded square in the $1$st or $3$rd row of the $1$st or $3$rd column is \[\frac{2}{3} \times \frac{3}{6} = \frac{1}{3}\]

The probability that a shaded square in the $2$nd or $4$th row of the $2$nd column is \[\frac{1}{3} \times \frac{3}{6} = \frac{1}{6}\]

Add those two together \[\frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \boxed{\textbf{(C)} \frac{1}{2}}\]

Solution 2

Alternatively, we may analyze this problem a little further.

First, we isolate the case where the rows are numbered 1 or 2. Notice that as listed before, the probability for picking a shaded square here is \[\frac{1}{2}\] because the column/row probabilities are the same, with the same number of shaded and non-shaded squares


Next we isolate the rows numbered 3 or 4. Note that the probability of picking the rows is same, because of our list up above. The columns, of course, still have the same probability. Because the number of shaded and non-shaded squares are equal, we have \[\frac{1}{2}\] Combining these we have a general probability of \[\boxed{\textbf{(C)} \frac{1}{2}}\]

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png