Difference between revisions of "2006 AIME I Problems/Problem 1"
m |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | Using the Pythagorean Theorem: | ||
+ | <math> (AD)^2 = (AC)^2 + (CD)^2 </math> | ||
+ | |||
+ | <math> (AC)^2 = (AB)^2 + (BC)^2 </math> | ||
+ | |||
+ | Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>: | ||
+ | |||
+ | <math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math> | ||
+ | |||
+ | Plugging in the given information: | ||
+ | |||
+ | <math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math> | ||
+ | |||
+ | <math> (AD)^2 = 961 </math> | ||
+ | |||
+ | <math> (AD)= 31 </math> | ||
+ | |||
+ | So the perimeter is: | ||
+ | <math> 18+21+14+31=084 </math> | ||
+ | |||
+ | --[[User:Xantos C. Guin|Xantos C. Guin]] 15:10, 30 June 2006 (EDT) | ||
== See also == | == See also == | ||
* [[2006 AIME I Problems]] | * [[2006 AIME I Problems]] |
Revision as of 14:10, 30 June 2006
Problem
In quadrilateral is a right angle, diagonal is perpendicular to and Find the perimeter of
Solution
Using the Pythagorean Theorem:
Substituting for :
Plugging in the given information:
So the perimeter is:
--Xantos C. Guin 15:10, 30 June 2006 (EDT)