Difference between revisions of "1999 USAMO Problems/Problem 6"
(Created page with "== Problem == Let <math>ABCD</math> be an isosceles trapezoid with <math>AB \parallel CD</math>. The inscribed circle <math>\omega</math> of triangle <math>BCD</math> meets <math...") |
|||
Line 9: | Line 9: | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 12:35, 4 July 2013
Problem
Let be an isosceles trapezoid with . The inscribed circle of triangle meets at . Let be a point on the (internal) angle bisector of such that . Let the circumscribed circle of triangle meet line at and . Prove that the triangle is isosceles.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
1999 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.