Difference between revisions of "2004 AMC 10B Problems/Problem 6"

(Solution)
Line 8: Line 8:
  
 
Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write:
 
Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write:
* <math>A=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 9\cdot 11\cdot(98!)^2</math>
+
* <math>A=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 11\cdot(3\cdot98!)^2</math>
* <math>B=100 \cdot 99 \cdot (98!)^2 = 9\cdot 11\cdot (10\cdot 98!)^2</math>
+
* <math>B=100 \cdot 99 \cdot (98!)^2 = 11\cdot (30\cdot 98!)^2 </math>
 
* <math>C=100\cdot (99!)^2 = (10\cdot 99!)^2</math>
 
* <math>C=100\cdot (99!)^2 = (10\cdot 99!)^2</math>
 
* <math>D=101\cdot 100\cdot (99!)^2 = 101 \cdot(10\cdot 99!)^2</math>
 
* <math>D=101\cdot 100\cdot (99!)^2 = 101 \cdot(10\cdot 99!)^2</math>
 
* <math>E=101\cdot (100!)^2</math>
 
* <math>E=101\cdot (100!)^2</math>
  
Clearly <math>\boxed{\mathrm{(C) \ } 99! \cdot 100!}</math> is a square, and as <math>9</math>, <math>11</math>, and <math>101</math> are primes, none of the other four are squares.
+
Clearly <math>\boxed{\mathrm{(C) \ } 99! \cdot 100!}</math> is a square, and as <math>11</math>, and <math>101</math> are primes, none of the other four are squares.
  
 
== See also ==
 
== See also ==

Revision as of 12:45, 20 January 2014

Problem

Which of the following numbers is a perfect square?

$\mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101!$

Solution

Using the fact that $n! = n\cdot (n-1)!$, we can write:

  • $A=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 11\cdot(3\cdot98!)^2$
  • $B=100 \cdot 99 \cdot (98!)^2 = 11\cdot (30\cdot 98!)^2$
  • $C=100\cdot (99!)^2 = (10\cdot 99!)^2$
  • $D=101\cdot 100\cdot (99!)^2 = 101 \cdot(10\cdot 99!)^2$
  • $E=101\cdot (100!)^2$

Clearly $\boxed{\mathrm{(C) \ } 99! \cdot 100!}$ is a square, and as $11$, and $101$ are primes, none of the other four are squares.

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png