GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2014 AMC 12A Problems"

(Problem 1)
(Problem 2)
Line 14: Line 14:
 
\textbf{(D) }42\qquad
 
\textbf{(D) }42\qquad
 
\textbf{(E) }42.50</math>
 
\textbf{(E) }42.50</math>
 +
 +
[[2014 AMC 10A  Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==

Revision as of 10:51, 7 February 2014

Problem 1

What is $10 \cdot \left(\tfrac{1}{2} + \tfrac{1}{5} + \tfrac{1}{10}\right)^{-1}?$

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{25}{2}\qquad\textbf{(D)}}\ \frac{170}{3}\qquad\textbf{(E)}\ 170$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 2

At the theater children get in for half price. The price for $5$ adult tickets and $4$ child tickets is $24.50$. How much would $8$ adult tickets and $6$ child tickets cost?

$\textbf{(A) }35\qquad \textbf{(B) }38.50\qquad \textbf{(C) }40\qquad \textbf{(D) }42\qquad \textbf{(E) }42.50$

Solution

Problem 3

Walking down Jane Street, Ralph passed four houses in a row, each painted a different color. He passed the orange house before the red house, and he passed the blue house before the yellow house. The blue house was not next to the yellow house. How many orderings of the colored houses are possible?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6$ (Error compiling LaTeX. Unknown error_msg)

Problem 4

Suppose that $a$ cows give $b$ gallons of milk in $c$ days. At this rate, how many gallons of milk will $d$ cows give in $e$ days?

$\textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}$ (Error compiling LaTeX. Unknown error_msg)

Problem 5

On an algebra quiz, $10\%$ of the students scored $70$ points, $35\%$ scored $80$ points, $30\%$ scored $90$ points, and the rest scored $100$ points. What is the difference between the mean and median score of the students' scores on this quiz?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}}\ 4\qquad\textbf{(E)}\ 5$ (Error compiling LaTeX. Unknown error_msg)

Problem 6

The difference between a two-digit number and the number obtained by reversing its digits is $5$ times the sum of the digits of either number. What is the sum of the two digit number and its reverse?

$\textbf{(A) }44\qquad \textbf{(B) }55\qquad \textbf{(C) }77\qquad \textbf{(D) }99\qquad \textbf{(E) }110$

Problem 7

The first three terms of a geometric progression are $\sqrt 3$, $\sqrt[3]3$, and $\sqrt[6]3$. What is the fourth term?

$\textbf{(A) }1\qquad \textbf{(B) }\sqrt[7]3\qquad \textbf{(C) }\sqrt[8]3\qquad \textbf{(D) }\sqrt[9]3\qquad \textbf{(E) }\sqrt[10]3\qquad$

Problem 8

A customer who intends to purchase an appliance has three coupons, only one of which may be used:

Coupon 1: $10\%$ off the listed price if the listed price is at least $50$

Coupon 2: $20$ dollars off the listed price if the listed price is at least $100$

Coupon 3: $18\%$ off the amount by which the listed price exceeds $100$

For which of the following listed prices will coupon $1$ offer a greater price reduction than either coupon $2$ or coupon $3$?

$\textbf{(A) }179.95\qquad \textbf{(B) }199.95\qquad \textbf{(C) }219.95\qquad \textbf{(D) }239.95\qquad \textbf{(E) }259.95\qquad$

Problem 9

Five positive consecutive integers starting with $a$ have average $b$. What is the average of $5$ consecutive integers that start with $b$?

$\textbf{(A)}\ a+3\qquad\textbf{(B)}\ a+4\qquad\textbf{(C)}\ a+5\qquad\textbf{(D)}}\ a+6\qquad\textbf{(E)}\ a+7$ (Error compiling LaTeX. Unknown error_msg)

Problem 10

Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles?

$\textbf{(A) }\dfrac{\sqrt3}4\qquad \textbf{(B) }\dfrac{\sqrt3}3\qquad \textbf{(C) }\dfrac23\qquad \textbf{(D) }\dfrac{\sqrt2}2\qquad \textbf{(E) }\dfrac{\sqrt3}2$

Problem 11

David drives from his home to the airport to catch a flight. He drives $35$ miles in the first hour, but realizes that he will be $1$ hour late if he continues at this speed. He increases his speed by $15$ miles per hour for the rest of the way to the airport and arrives $30$ minutes early. How many miles is the airport from his home?

$\textbf{(A) }140\qquad \textbf{(B) }175\qquad \textbf{(C) }210\qquad \textbf{(D) }245\qquad \textbf{(E) }280\qquad$

Problem 12

Two circles intersect at points $A$ and $B$. The minor arcs $AB$ measure $30^\circ$ on one circle and $60^\circ$ on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle?

$\textbf{(A) }2\qquad \textbf{(B) }1+\sqrt3\qquad \textbf{(C) }3\qquad \textbf{(D) }2+\sqrt3\qquad \textbf{(E) }4\qquad$

Problem 13

A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms?

$\textbf{(A) }2100\qquad \textbf{(B) }2220\qquad \textbf{(C) }3000\qquad \textbf{(D) }3120\qquad \textbf{(E) }3125\qquad$

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25