Difference between revisions of "1964 AHSME Problems/Problem 32"

(Created page with "If <math>\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}</math>, then: <math>\textbf{(A) }a \text{ must equal }c\qquad\textbf{(B) }a+b+c+d\text{ must equal zero}\qquad</math> <math>\textbf{(...")
 
Line 1: Line 1:
 +
==Problem==
 +
 
If <math>\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}</math>, then:
 
If <math>\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}</math>, then:
  

Revision as of 16:54, 5 March 2014

Problem

If $\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}$, then:

$\textbf{(A) }a \text{ must equal }c\qquad\textbf{(B) }a+b+c+d\text{ must equal zero}\qquad$

$\textbf{(C) }\text{either }a=c\text{ or }a+b+c+d=0\text{, or both}\qquad$

$\textbf{(D) }a+b+c+d\ne 0\text{ if }a=c\qquad$

$\textbf{(E) }a(b+c+d)=c(a+b+d)$