Difference between revisions of "1964 AHSME Problems/Problem 34"

(Created page with "==Problem== If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals: <math>\textbf{(A) }1+i\...")
 
(Problem)
Line 3: Line 3:
 
If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals:
 
If <math>n</math> is a multiple of <math>4</math>, the sum <math>s=1+2i+3i^2+\cdots+(n+1)i^n</math>, where <math>i=\sqrt{-1}</math>, equals:
  
<math>\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math>
+
<math>\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad</math>
 +
 
 +
<math>\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)</math>

Revision as of 17:07, 5 March 2014

Problem

If $n$ is a multiple of $4$, the sum $s=1+2i+3i^2+\cdots+(n+1)i^n$, where $i=\sqrt{-1}$, equals:

$\textbf{(A) }1+i\qquad\textbf{(B) }\frac{1}{2}(n+2)\qquad\textbf{(C) }\frac{1}{2}(n+2-ni)\qquad$

$\textbf{(D) }\frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E) }\frac{1}{8}(n^2+8-4ni)$