Difference between revisions of "1994 AHSME Problems/Problem 10"

(Created page with "==Problem== For distinct real numbers <math>x</math> and <math>y</math>, let <math>M(x,y)</math> be the larger of <math>x</math> and <math>y</math> and let <math>m(x,y)</math> be...")
 
(Solution)
Line 4: Line 4:
 
<math> \textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ d \qquad\textbf{(E)}\ e </math>
 
<math> \textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ d \qquad\textbf{(E)}\ e </math>
 
==Solution==
 
==Solution==
 +
We work thorough the equation step by step, simplifying as follows:
 +
 +
<cmath>\begin{align*}M(M(a,m(b,c)),m(d,m(a,e)))&=M(M(a,b),m(d,a))\\&=M(b,a)\\&=\boxed{\textbf{(B) }b}\end{align*}</cmath>
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]

Revision as of 18:03, 28 June 2014

Problem

For distinct real numbers $x$ and $y$, let $M(x,y)$ be the larger of $x$ and $y$ and let $m(x,y)$ be the smaller of $x$ and $y$. If $a<b<c<d<e$, then \[M(M(a,m(b,c)),m(d,m(a,e)))=\] $\textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ d \qquad\textbf{(E)}\ e$

Solution

We work thorough the equation step by step, simplifying as follows:

\begin{align*}M(M(a,m(b,c)),m(d,m(a,e)))&=M(M(a,b),m(d,a))\\&=M(b,a)\\&=\boxed{\textbf{(B) }b}\end{align*}

--Solution by TheMaskedMagician