Difference between revisions of "1973 Canadian MO Problems/Problem 5"
m (Created page with "==Problem== ==Solution== ==See also== *1973 Canadian MO {{CanadaMO box|year=1973||num-b=4||num-a=6}}") |
m (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | |||
+ | For every positive integer <math>n</math>, let <math>h(n) = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}</math>. | ||
+ | |||
+ | For example, <math>h(1) = 1, h(2) = 1+\frac{1}{2}, h(3) = 1+\frac{1}{2}+\frac{1}{3}</math>. | ||
+ | |||
+ | Prove that <math>n+h(1)+h(2)+h(3)+\cdots+h(n-1) = nh(n)\qquad</math> for <math>n=2,3,4,\ldots</math> | ||
==Solution== | ==Solution== |