Difference between revisions of "1972 IMO Problems/Problem 3"
(→Solution) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | |||
+ | Let <math>f(m,n)=\frac{(2m)!(2n)!}{m!n!(m+n)!}</math>. We intend to show that <math>f(m,n)</math> is integral for all <math>m,n \geq 0</math>. To start, we would like to find a recurrence relation for <math>f(m,n)</math>. | ||
+ | |||
+ | First, let's look at <math>f(m,n-1)</math>: | ||
+ | |||
+ | <math>f(m,n-1)=\frac{(2m)!(2n-2)!}{m!(n-1)!(m+n-1)!}=\frac{(2m)!(2n)!(n-1)(m+n-1)}{m!n!(m+n)!(2n-1)(2n-2)}=f(m,n) \frac{(n-1)(m+n-1)}{(2n-1)(2n-2)}=f(m,n) \frac{m+n-1}{2(2n-1)}</math> | ||
+ | |||
+ | Second, let's look at <math>f(m+1,n-1)</math>: | ||
+ | |||
+ | <math>f(m+1,n-1)=\frac{(2m+2)!(2n-2)!}{(m+1)!(n-1)!(m+n)!}=\frac{(2m)!(2n)!(2m+1)(2m+2)(n-1)}{m!n!(m+n)!(m+1)(2n-1)(2n-2)}=f(m,n) \frac{(2m+1)(2m+2)(n-1)}{(m+1)(2n-1)(2n-2)}=f(m,n) \frac{(2m+1)}{2n-1}</math> | ||
+ | |||
+ | Combining, | ||
+ | |||
+ | <math>4f(m,n-1)-f(m+1,n-1)=f(m,n) (\frac{4(m+n-1)}{2(2n-1)}-\frac{2m+1}{2n-1})=f(m,n) \frac{2m+2n-2-2m+1}{2n-1}=f(m,n)</math>. | ||
+ | |||
+ | Therefore, we have found the recurrence relation <math>f(m,n)=4f(m,n-1)-f(m+1,n-1)</math>. | ||
+ | |||
+ | We can see that <math>f(m,0)=\frac{(2m)!}{m!m!}</math> is integral because the RHS is just <math>_{2m} C _m</math>, which we know to be integral for all <math>m \geq 0</math>. | ||
+ | |||
+ | So, <math>f(m,1)=4f(m,0)-f(m+1,0)</math> must be integral, and then <math>f(m,2)=4f(m,1)-f(m+1,1)</math> must be integral, etc. | ||
+ | |||
+ | By induction, <math>f(m,n)</math> is integral for all <math>m,n \geq 0</math>. |
Revision as of 09:13, 20 October 2014
Let and be arbitrary non-negative integers. Prove that is an integer. (.)
Solution
Let . We intend to show that is integral for all . To start, we would like to find a recurrence relation for .
First, let's look at :
Second, let's look at :
Combining,
.
Therefore, we have found the recurrence relation .
We can see that is integral because the RHS is just , which we know to be integral for all .
So, must be integral, and then must be integral, etc.
By induction, is integral for all .