Difference between revisions of "1980 USAMO Problems/Problem 3"

(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
<math>A + B + C</math> is an integral multiple of <math>\pi</math>. <math>x, y, </math> and <math>z</math> are real numbers. If <math>x\sin(A)\plus{}y\sin(B)\plus{}z\sin(C)\equal{}x^2\sin(2A)+y^2\sin(2B)+z^2\sin(2C)=0</math>, show that <math>x^n\sin(na)+y^n \sin(nb) +z^n \sin(nc)=0</math> for any positive integer <math>n</math>.
+
<math>A + B + C</math> is an integral multiple of <math>\pi</math>. <math>x, y, </math> and <math>z</math> are real numbers. If <math>x\sin(A)\plus{}y\sin(B)\plus{}z\sin(C)\equal{}x^2\sin(2A)+y^2\sin(2B)+z^2\sin(2C)=0</math>, show that <math>x^n\sin(nA)+y^n \sin(nB) +z^n \sin(nC)=0</math> for any positive integer <math>n</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 06:44, 17 January 2015

Problem

$A + B + C$ is an integral multiple of $\pi$. $x, y,$ and $z$ are real numbers. If $x\sin(A)\plus{}y\sin(B)\plus{}z\sin(C)\equal{}x^2\sin(2A)+y^2\sin(2B)+z^2\sin(2C)=0$ (Error compiling LaTeX. Unknown error_msg), show that $x^n\sin(nA)+y^n \sin(nB) +z^n \sin(nC)=0$ for any positive integer $n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1980 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png