GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2015 AMC 12A Problems"

(Created page with "==Problem 1== What is the value of <math>(2^0-1+5^2-0)^-1\times5</math>? <math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \f...")
 
(Problem 1)
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
  
What is the value of <math>(2^0-1+5^2-0)^-1\times5</math>?
+
What is the value of <math>(2^0-1+5^2-0)^{-1}\times5</math>?
  
 
<math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25</math>
 
<math> \textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25</math>
  
 
[[2015 AMC 12A  Problems/Problem 1|Solution]]
 
[[2015 AMC 12A  Problems/Problem 1|Solution]]
 +
 
==Problem 2==
 
==Problem 2==
  

Revision as of 12:55, 4 February 2015

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5$?

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png