Difference between revisions of "2015 AMC 12A Problems/Problem 2"
(Created page with "Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle?") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle? | Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle? | ||
+ | |||
+ | <math> \textbf{(A)}\ 52\qquad\textbf{(B)}\ 57\qquad\textbf{(C)}\ 62\qquad\textbf{(D)}}\ 67\qquad\textbf{(E)}\ 72</math> | ||
+ | |||
+ | ==Solution== | ||
+ | The third side must be less than 20 + 15 = 35 by the Triangle Inequality, and so the perimeter must be less than 20 + 15 + 35 = 70. Clearly, <math>\boxed{E}</math> must be our answer. |
Revision as of 18:06, 4 February 2015
Problem
Two of the three sides of a triangle are 20 and 15. Which of the following numbers is not a possible perimeter of the triangle?
$\textbf{(A)}\ 52\qquad\textbf{(B)}\ 57\qquad\textbf{(C)}\ 62\qquad\textbf{(D)}}\ 67\qquad\textbf{(E)}\ 72$ (Error compiling LaTeX. Unknown error_msg)
Solution
The third side must be less than 20 + 15 = 35 by the Triangle Inequality, and so the perimeter must be less than 20 + 15 + 35 = 70. Clearly, must be our answer.