Difference between revisions of "2015 AIME I Problems"
(→Problem 2) |
(→Problem 3) |
||
Line 11: | Line 11: | ||
==Problem 3== | ==Problem 3== | ||
There is a prime number <math>p</math> such that <math>16p+1</math> is the cube of a positive integer. Find <math>p</math>. | There is a prime number <math>p</math> such that <math>16p+1</math> is the cube of a positive integer. Find <math>p</math>. | ||
+ | |||
+ | [[2015 AIME I Problems/Problem 3|Solution]] | ||
==Problem 4== | ==Problem 4== |
Revision as of 17:09, 20 March 2015
Contents
Problem 1
The expressions = and = are obtained by writing multiplication and addition operators in an alternating pattern between successive integers. Find the positive difference between integers and .
Problem 2
The nine delegates to the Economic Cooperation Conference include officials from Mexico, officials from Canada, and officials from the United States. During the opening session, three of the delegates fall asleep. Assuming that the three sleepers were determined randomly, the probability that exactly two of the sleepers are from the same country is , where m and n are relatively prime positive integers. Find .
Problem 3
There is a prime number such that is the cube of a positive integer. Find .
Problem 4
Problem 5
In a drawer Sandy has pairs of socks, each pair a different color. On Monday Sandy selects two individual socks at random from the socks in the drawer. On Tuesday Sandy selects of the remaining socks at random and on Wednesday two of the remaining socks at random. The probability that Wednesday is the first day Sandy selects matching socks is , where and are relatively prime positive integers, Find .
Problem 6
Problem 7
In the diagram below, is a square. Point is the midpoint of . Points and lie on , and and lie on and , respectively, so that is a square. Points and lie on , and and lie on and , respectively, so that is a square. The area of is 99. Find the area of .
INSERT DIAGRAM HERE
Problem 8
For positive integer , let denote the sum of the digits of . Find the smallest positive integer satisfying .
Problem 9
Problem 10
Problem 11
Problem 12
Consider all 1000-element subsets of the set {1, 2, 3, ... , 2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is , where and are relatively prime positive integers. Find .
Problem 13
Problem 14
Problem 15
A block of wood has the shape of a right circular cylinder with radius and height , and its entire surface has been painted blue. Points and are chosen on the edge of one of the circular faces of the cylinder so that on that face measures . The block is then sliced in half along the plane that passes through point , point , and the center of the cylinder, revealing a flat, unpainted face on each half. The area of one of these unpainted faces is , where , , and are integers and is not divisible by the square of any prime. Find .