Difference between revisions of "1982 AHSME Problems/Problem 14"
LOTRFan123 (talk | contribs) |
LOTRFan123 (talk | contribs) (→Problem 14:) |
||
Line 5: | Line 5: | ||
In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | ||
− | + | [asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("<math>A</math>", A, W); label("<math>B</math>", B, SE); label("<math>C</math>", C, NE); label("<math>D</math>", D, dir(0)); label("<math>P</math>", P, S); label("<math>N</math>", N, S); label("<math>O</math>", O, S); label("<math>E</math>", E, dir(120)); label("<math>F</math>", F, NE); label("<math>G</math>", G, dir(100));[/asy] | |
==Solution:== | ==Solution:== |
Revision as of 13:04, 22 August 2015
1982 AHSME Problems/Problem 14
Problem 14:
In the adjoining figure, points and lie on line segment , and , and are diameters of circle , and , respectively. Circles , and all have radius and the line is tangent to circle at . If intersects circle at points and , then chord has length
[asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("", A, W); label("", B, SE); label("", C, NE); label("", D, dir(0)); label("", P, S); label("", N, S); label("", O, S); label("", E, dir(120)); label("", F, NE); label("", G, dir(100));[/asy]
Solution:
Since is 15, is 75, and , .
Now drop an altitude from to at point . , and since is similar to . . so by Pythagorean Theorem, . Thus .