Difference between revisions of "British Flag Theorem"

(Problems)
Line 69: Line 69:
 
<cmath> PA2+PC2=AX2+XP2+CY2+YP2,PB2+PD2=BX2+XP2+DY2+YP2. </cmath>
 
<cmath> PA2+PC2=AX2+XP2+CY2+YP2,PB2+PD2=BX2+XP2+DY2+YP2. </cmath>
 
From rectangles <math>AXYD</math> and <math>BXYC</math>, we have <math>AX = DY</math> and <math>BX = CY</math>, so the expressions above for <math>PA^2 + PC^2</math> and <math>PB^2 + PD^2</math> are equal, as desired.
 
From rectangles <math>AXYD</math> and <math>BXYC</math>, we have <math>AX = DY</math> and <math>BX = CY</math>, so the expressions above for <math>PA^2 + PC^2</math> and <math>PB^2 + PD^2</math> are equal, as desired.
 +
 +
==Problems==
 +
[http://artofproblemsolving.com/community/c3h579390 2014 MATHCOUNTS Chapter Sprint #29]
 
[[Category:geometry]]
 
[[Category:geometry]]
  

Revision as of 19:27, 11 October 2015

The British flag theorem says that if a point P is chosen inside rectangle ABCD then $AP^{2}+CP^{2}=BP^{2}+DP^{2}$. The theorem is called the British flag theorem due to the similarities between the British flag and a diagram of the points (shown below):

British Flag

[asy] size(200); pair A,B,C,D,P; A=(0,0); B=(200,0); C=(200,150); D=(0,150); P=(124,85); draw(A--B--C--D--cycle); draw(A--P); draw(B--P); draw(C--P); draw(D--P); label("$A$",A,(-1,0)); dot(A); label("$B$",B,(0,-1)); dot(B); label("$C$",C,(1,0)); dot(C); label("$D$",D,(-1,0)); dot(D); dot(P); label("$P$",P,NNE); draw((0,85)--(200,85)); draw((124,0)--(124,150)); label("$w$",(124,0),(0,-1)); label("$x$",(200,85),(1,0)); label("$y$",(124,150),(0,1)); label("$z$",(0,85),(-1,0)); dot((124,0)); dot((200,85)); dot((124,150)); dot((0,85)); [/asy]

The theorem also applies if the point $P$ is selected outside or on the boundary of the rectangle, although the proof is harder to visualize in this case.

Proof

Squares of lengths suggest right triangles. We build right triangles by drawing a line through $P$ perpendicular to two sides of the rectangle, as shown below. Both $AXYD$ and $BXYC$ are rectangles. [asy] pair A,B,C,D,P,X,Y; A = (0,0); B=(1,0); D = (0,0.7); C = B+D; P = (0.3,0.4); X = (0.3,0); Y=(0.3,0.7); draw(A--B--C--D--A--P--C); draw(X--Y); draw(B--P--D); draw(rightanglemark(P,X,A,1.5)); draw(rightanglemark(B,X,P,1.5)); draw(rightanglemark(P,Y,C,1.5)); draw(rightanglemark(D,Y,P,1.5)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$Y$",Y,N); label("$X$",X,S); label("$P$",P+(0,0.03),NE);[/asy] Applying the Pythagorean Theorem to each of the four right triangles in the diagram, we have \begin{align*}PA^2 &= AX^2+XP^2,\\ PB^2 &= BX^2+XP^2,\\ PC^2 &= CY^2+YP^2,\\ PD^2 &= DY^2+YP^2.\end{align*} So, we have \begin{align*}PA^2+PC^2 &= AX^2+XP^2+CY^2+YP^2,\\ PB^2+PD^2 &= BX^2+XP^2+DY^2+YP^2.\end{align*} From rectangles $AXYD$ and $BXYC$, we have $AX = DY$ and $BX = CY$, so the expressions above for $PA^2 + PC^2$ and $PB^2 + PD^2$ are equal, as desired.

Problems

2014 MATHCOUNTS Chapter Sprint #29

This article is a stub. Help us out by expanding it.