Difference between revisions of "1983 AHSME Problems/Problem 25"
(Changed into LaTeX) |
|||
Line 1: | Line 1: | ||
Problem: | Problem: | ||
− | If 60^a=3 and 60^b=5, then 12^[(1-a-b)/2(1-b)] is | + | If <math>60^a=3</math> and <math>60^b=5</math>, then <math>12^[(1-a-b)/2(1-b)]</math> is |
− | (A) | + | <math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad</math> |
+ | Solution: Since <math>12 = 60/5</math>, <math>12 = 60/(60^b)</math>= <math>60^{(1-b)}</math> | ||
− | + | So we can rewrite <math>12^{[(1-a-b)/2(1-b)]}</math> as <math>60^{[(1-b)(1-a-b)/2(1-b)]}</math> | |
− | + | this simplifies to <math>60^{[(1-a-b)/2]}</math> | |
− | + | which can be rewritten as <math>(60^{(1-a-b)})^{(1/2)}</math> | |
− | + | <math>60^(1-a-b) = 60^1/[(60^a)(60^b) = 60/(3*5) = 4</math> | |
− | + | <math>4^{(1/2)} = 2</math> | |
− | + | Answer:<math>B</math> | |
− | |||
− | Answer:B |
Revision as of 13:19, 28 October 2015
Problem: If and , then is
Solution: Since , =
So we can rewrite as
this simplifies to
which can be rewritten as
Answer: