Difference between revisions of "2006 USAMO Problems"
Ragnarok23 (talk | contribs) |
Ragnarok23 (talk | contribs) (→Problem 3) |
||
Line 19: | Line 19: | ||
<math>(p(f(n^2))-2n)_{n\ge 0}</math> | <math>(p(f(n^2))-2n)_{n\ge 0}</math> | ||
− | is bounded above. (In particular, this requires <math>f(n^2)\neq 0</math> for <math>n\ge 0</math> | + | is bounded above. (In particular, this requires <math>f(n^2)\neq 0</math> for <math>n\ge 0</math>) |
[[2006 USAMO Problems/Problem 3|Solution]] | [[2006 USAMO Problems/Problem 3|Solution]] |
Revision as of 11:04, 12 July 2006
Contents
[hide]Day 1
Problem 1
Let be a prime number and let be an integer with . Prove that there exists integers and with and
if and only if is not a divisor of .
Note: For a real number, let denote the greatest integer less than or equal to , and let denote the fractional part of x.
Problem 2
For a given positive integer k find, in terms of k, the minimum value of for which there is a set of distinct positive integers that has sum greater than but every subset of size k has sum at most .
Problem 3
For integral , let be the greatest prime divisor of . By convention, we set and . Find all polynomial with integer coefficients such that the sequence
is bounded above. (In particular, this requires for )
Day 2
Problem 1
Find all positive integers such that there are positive rational numbers satisfying
Problem 2
A mathematical frog jumps along the number line. The frog starts at , and jumps according to the following rule: if the frog is at integer , then it can jump either to or to where is the largest power of that is a factor of . Show that if is a positive integer and is a nonnegative integer, then the minimum number of jumps needed to reach is greater than the minimum number of jumps needed to reach
Problem 3
Let be a quadrilateral, and let and be points on sides and respectively, such that Ray meets rays and at and respectively. Prove that the circumcircles of triangles and pass through a common point.