Difference between revisions of "2016 AMC 10A Problems/Problem 4"
Math101010 (talk | contribs) (Created page with "The remainder can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y \neq 0</math> by <cmath>\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right ...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
The remainder can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y \neq 0</math> by <cmath>\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor</cmath>where <math>\left \lfloor \tfrac{x}{y} \right \rfloor</math> denotes the greatest integer less than or equal to <math>\tfrac{x}{y}</math>. What is the value of <math>\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )</math>? | The remainder can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y \neq 0</math> by <cmath>\text{rem} (x ,y)=x-y\left \lfloor \frac{x}{y} \right \rfloor</cmath>where <math>\left \lfloor \tfrac{x}{y} \right \rfloor</math> denotes the greatest integer less than or equal to <math>\tfrac{x}{y}</math>. What is the value of <math>\text{rem} (\tfrac{3}{8}, -\tfrac{2}{5} )</math>? | ||
+ | |||
+ | <math>\textbf{(A) } -\frac{3}{8} \qquad \textbf{(B) } -\frac{1}{40} \qquad \textbf{(C) } 0 \qquad \textbf{(D) } \frac{3}{8} \qquad \textbf{(E) } \frac{31}{40}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | The value, by definition, is <cmath>\frac{3}{8}-\left(-\frac{2}{5}\right)\lfloor{\frac{3}{8}*\frac{-5}{2}\rfloor=-\frac{15}{16}}=\frac{3}{8}-\frac{2}{5}=\boxed{\textbf{(B) } -\frac{1}{40}.}</cmath> |
Revision as of 18:29, 3 February 2016
Problem
The remainder can be defined for all real numbers and with by where denotes the greatest integer less than or equal to . What is the value of ?
Solution
The value, by definition, is