Difference between revisions of "2016 AMC 12A Problems"
m (→Problem 6) |
m (→Problem 7) |
||
Line 59: | Line 59: | ||
==Problem 7== | ==Problem 7== | ||
− | + | Which of these describes the graph of <math>x^2(x+y+1)=y^2(x+y+1)</math> ? | |
− | |||
− | <math> | ||
+ | <math> \textbf{(A)}\ \text{two parallel lines}\\ | ||
+ | \qquad\textbf{(B)}\ \text{two intersecting lines}\\ | ||
+ | \qquad\textbf{(C)}\ \text{three lines that all pass through a common point}\\ | ||
+ | \qquad\textbf{(D)}\ \text{three lines that do not all pass through a comment point}\\ | ||
+ | \qquad\textbf{(E)}\ \text{a line and a parabola}</math> | ||
[[2016 AMC 12A Problems/Problem 7|Solution]] | [[2016 AMC 12A Problems/Problem 7|Solution]] | ||
− | |||
==Problem 8== | ==Problem 8== |
Revision as of 20:43, 3 February 2016
2016 AMC 12A (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
What is the value of ?
Problem 2
For what value of does ?
Problem 3
The remainder function can be defined for all real numbers and with by
,
where denotes the greatest integer less than or equal to . What is the value of ?
Problem 4
The mean, median, and mode of the 7 data values are all equal to . What is the value of ?
Problem 5
Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two prime numbers (for example, ). So far, no one has been able to prove that the conjecture is true, and no one has found a counterexample to show that the conjecture is false. What would a counterexample consist of?
Problem 6
A triangular array of 2016 coins in the first row, 2 coins in the second row, 3 coins in the third row, and so on up to coins in the th row. What is the sum of the digits of ?
Problem 7
Which of these describes the graph of ?
Problem 8
Problem text
Problem 9
Problem text
Problem 10
Problem text
Problem 11
Problem text
Problem 12
Problem text
Problem 13
Problem text
Problem 14
Problem text
Problem 15
Problem text
Problem 16
Problem text
Problem 17
Problem text
Problem 18
Problem text
Problem 19
Problem text
Problem 20
Problem text
Problem 21
Problem text
Problem 22
Problem text
Problem 23
Problem text
Problem 24
Problem text
Problem 25
Problem text