Difference between revisions of "2016 AMC 12A Problems/Problem 24"

(Solution)
(Solution)
Line 20: Line 20:
 
The actual function:
 
The actual function:
 
<math>f(x)=x^3-\left(3\sqrt{3}\right)x^2+9x-3\sqrt{3}</math>
 
<math>f(x)=x^3-\left(3\sqrt{3}\right)x^2+9x-3\sqrt{3}</math>
<math>f(x)=0\rightarrow x=\sqrt{3}\text{ triple root.}</math>
+
 
<math>\text{Complete the cube (!)}</math>
+
<math>f(x)=0\rightarrow x=\sqrt{3}</math> triple root! "Complete the cube."
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2016|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2016|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:31, 5 February 2016

Problem

There is a smallest positive real number $a$ such that there exists a positive real number $b$ such that all the roots of the polynomial $x^3-ax^2+bx-a$ are real. In fact, for this value of $a$ the value of $b$ is unique. What is this value of $b$?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12$

Solution

The acceleration must be zero at the $x$-intercept; this intercept must be an inflection point for the minimum $a$ value. Derive $f(x)$ so that the acceleration $f''(x)=0$: $x^3-ax^2+bx-a\rightarrow 3x^2-2ax+b\rightarrow 6x-2a\rightarrow x=\frac{a}{3}$ for the inflection point/root. The function with the minimum $a$:

\[f(x)=\left(x-\frac{a}{3}\right)^3\] \[x^3-ax^2+\left(\frac{a^2}{3}\right)x-\frac{a^3}{27}\] Since this is equal to the original equation $x^3-ax^2+bx-a$,

\[\frac{a^3}{27}=a\rightarrow a^2=27\rightarrow a=3\sqrt{3}\] \[b=\frac{a^2}{3}=\frac{27}{3}=\boxed{\textbf{(C) }9}\]

The actual function: $f(x)=x^3-\left(3\sqrt{3}\right)x^2+9x-3\sqrt{3}$

$f(x)=0\rightarrow x=\sqrt{3}$ triple root! "Complete the cube."

See Also

2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png