Difference between revisions of "2016 AIME I Problems/Problem 11"
(Created page with "We substitute <math>x=2</math> into <math>(x-1)P(x+1)=(x+2)P(x)</math> to get <math>P(3)=4P(2)</math>. Since we also have that <math>\left(P(2)\right)^2 = P(3)</math>, we have...") |
|||
Line 1: | Line 1: | ||
+ | Let <math>P(x)</math> be a nonzero polynomial such that <math>(x-1)P(x+1)=(x+2)P(x)</math> for every real <math>x</math>, and <math>\left(P(2)\right)^2 = P(3)</math>. Then <math>P(\tfrac72)=\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
+ | |||
We substitute <math>x=2</math> into <math>(x-1)P(x+1)=(x+2)P(x)</math> to get <math>P(3)=4P(2)</math>. Since we also have that <math>\left(P(2)\right)^2 = P(3)</math>, we have that <math>P(2)=4</math> and <math>P(3)=16</math>. We can also substitute <math>x=1</math>, <math>x=0</math>, and <math>x=3</math> into <math>(x-1)P(x+1)=(x+2)P(x)</math> to get that <math>0=P(1)</math>, <math>-1P(1)=2P(0)</math>, and <math>2P(4)=5P(3)</math>. This leads us to the conclusion that <math>P(0)=P(1)=0</math> and <math>P(4)=40</math>. | We substitute <math>x=2</math> into <math>(x-1)P(x+1)=(x+2)P(x)</math> to get <math>P(3)=4P(2)</math>. Since we also have that <math>\left(P(2)\right)^2 = P(3)</math>, we have that <math>P(2)=4</math> and <math>P(3)=16</math>. We can also substitute <math>x=1</math>, <math>x=0</math>, and <math>x=3</math> into <math>(x-1)P(x+1)=(x+2)P(x)</math> to get that <math>0=P(1)</math>, <math>-1P(1)=2P(0)</math>, and <math>2P(4)=5P(3)</math>. This leads us to the conclusion that <math>P(0)=P(1)=0</math> and <math>P(4)=40</math>. | ||
Revision as of 12:45, 4 March 2016
Let be a nonzero polynomial such that for every real , and . Then , where and are relatively prime positive integers. Find .
We substitute into to get . Since we also have that , we have that and . We can also substitute , , and into to get that , , and . This leads us to the conclusion that and .
We next use finite differences to find that is a cubic polynomial. Thus, must be of the form of . It follows that ; we now have a system of equations to solve. We plug in , , and to get
We solve this system to get that , , and . Thus, . Plugging in , we see that . Thus, , , and our answer is .