Difference between revisions of "2016 AIME II Problems/Problem 4"

(Solution)
 
m (Solution)
Line 2: Line 2:
  
 
==Solution==
 
==Solution==
By counting the number of green cubes <math>2</math> different ways, we have <math>12a=20b</math>, or <math>a=\dfrac{5}{3} b</math>. Notice that there are only <math>3</math> possible colors for unit cubes, so for each of the <math>1 \ times b \times c</math> layers, there are <math>bc-21</math> yellow cubes, and similarly there are <math>ac-45</math> red cubes in each of the <math>1 \times a \times b</math> layers. Therefore, we have <math>a(bc-21)=25b</math> and <math>b(ac-45)=9a</math>. We check a few small values of <math>a,b</math> and solve for <math>c</math>, checking <math>(a,b)=(5,3)</math> gives <math>c=12</math> with a volume of <math>180</math>, <math>(a,b)=(10,6)</math> gives <math>c=6</math> with a volume of <math>360</math>, and <math>(a,b)=(15,9)</math> gives <math>c=4</math>, with a volume of <math>540</math>. Any higher <math>(a,b)</math> will <math>ab>180</math>, so therefore, the minimum volume is <math>\boxed{180}</math>.
+
By counting the number of green cubes <math>2</math> different ways, we have <math>12a=20b</math>, or <math>a=\dfrac{5}{3} b</math>. Notice that there are only <math>3</math> possible colors for unit cubes, so for each of the <math>1 \times b \times c</math> layers, there are <math>bc-21</math> yellow cubes, and similarly there are <math>ac-45</math> red cubes in each of the <math>1 \times a \times b</math> layers. Therefore, we have <math>a(bc-21)=25b</math> and <math>b(ac-45)=9a</math>. We check a few small values of <math>a,b</math> and solve for <math>c</math>, checking <math>(a,b)=(5,3)</math> gives <math>c=12</math> with a volume of <math>180</math>, <math>(a,b)=(10,6)</math> gives <math>c=6</math> with a volume of <math>360</math>, and <math>(a,b)=(15,9)</math> gives <math>c=4</math>, with a volume of <math>540</math>. Any higher <math>(a,b)</math> will <math>ab>180</math>, so therefore, the minimum volume is <math>\boxed{180}</math>.
  
 
Solution by Shaddoll
 
Solution by Shaddoll

Revision as of 18:33, 17 March 2016

An $a \times b \times c$ rectangular box is built from $a \cdot b \cdot c$ unit cubes. Each unit cube is colored red, green, or yellow. Each of the $a$ layers of size $1 \times b \times c$ parallel to the $(b \times c)$ faces of the box contains exactly $9$ red cubes, exactly $12$ green cubes, and some yellow cubes. Each of the $b$ layers of size $a \times 1 \times c$ parallel to the $(a \times c)$ faces of the box contains exactly $20$ green cubes, exactly $25$ yellow cubes, and some red cubes. Find the smallest possible volume of the box.

Solution

By counting the number of green cubes $2$ different ways, we have $12a=20b$, or $a=\dfrac{5}{3} b$. Notice that there are only $3$ possible colors for unit cubes, so for each of the $1 \times b \times c$ layers, there are $bc-21$ yellow cubes, and similarly there are $ac-45$ red cubes in each of the $1 \times a \times b$ layers. Therefore, we have $a(bc-21)=25b$ and $b(ac-45)=9a$. We check a few small values of $a,b$ and solve for $c$, checking $(a,b)=(5,3)$ gives $c=12$ with a volume of $180$, $(a,b)=(10,6)$ gives $c=6$ with a volume of $360$, and $(a,b)=(15,9)$ gives $c=4$, with a volume of $540$. Any higher $(a,b)$ will $ab>180$, so therefore, the minimum volume is $\boxed{180}$.

Solution by Shaddoll