Difference between revisions of "2016 AMC 12A Problems/Problem 7"
m (→Solution 2) |
|||
Line 10: | Line 10: | ||
==Solution 2== | ==Solution 2== | ||
− | If <math>x+y+1\neq0</math>, then dividing both sides of the equation by <math>x+y+1</math> gives us <math>x^2=y^2</math>. Rearranging and factoring, we get <math>x^2-y^2=(x+y)(x-y)=0</math>. If <math>x+y+1=0</math>, then the equation is satisfied. Thus either <math>x+y=0</math>, <math>x-y=0</math>, | + | If <math>x+y+1\neq0</math>, then dividing both sides of the equation by <math>x+y+1</math> gives us <math>x^2=y^2</math>. Rearranging and factoring, we get <math>x^2-y^2=(x+y)(x-y)=0</math>. If <math>x+y+1=0</math>, then the equation is satisfied. Thus either <math>x+y=0</math>, <math>x-y=0</math>, or <math>x+y+1=0</math>. These equations can be rearranged into the lines <math>y=-x</math>, <math>y=x</math>, and <math>y=-x-1</math>, respectively. Since these three lines are distinct, the answer is <math>\boxed{\textbf{(D)}\; \text{three lines that do not all pass through a common point}}</math>. |
==Solution 3== | ==Solution 3== |
Revision as of 10:37, 21 March 2016
Problem
Which of these describes the graph of ?
Solution 1
The equation tells us or . generates two lines and . is another straight line. The only intersection of and is , which is not on . Therefore, the graph is three lines that do not have a common intersection, or
Solution 2
If , then dividing both sides of the equation by gives us . Rearranging and factoring, we get . If , then the equation is satisfied. Thus either , , or . These equations can be rearranged into the lines , , and , respectively. Since these three lines are distinct, the answer is .
Solution 3
Subtract on both sides of the equation to get . Factoring gives us , so either , , or . Continue on with the second half of solution 2.
Diagram:
See Also
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.