Difference between revisions of "2015 IMO Problems/Problem 5"

m
Line 1: Line 1:
 
Let <math>\mathbb{R}</math> be the set of real numbers. Determine all functions <math>f</math>:<math>\mathbb{R}\rightarrow\mathbb{R}</math> satisfying the equation
 
Let <math>\mathbb{R}</math> be the set of real numbers. Determine all functions <math>f</math>:<math>\mathbb{R}\rightarrow\mathbb{R}</math> satisfying the equation
 +
 
<math>f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)</math>
 
<math>f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)</math>
 +
 
for all real numbers <math>x</math> and <math>y</math>.
 
for all real numbers <math>x</math> and <math>y</math>.
 +
 
Proposed by Dorlir Ahmeti, Albania
 
Proposed by Dorlir Ahmeti, Albania

Revision as of 15:01, 4 April 2016

Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f$:$\mathbb{R}\rightarrow\mathbb{R}$ satisfying the equation

$f(x+f(x+y))+f(xy) = x+f(x+y)+yf(x)$

for all real numbers $x$ and $y$.

Proposed by Dorlir Ahmeti, Albania