Difference between revisions of "Viviani's theorem"
(→Proof) |
m (→Proof) |
||
Line 24: | Line 24: | ||
draw((10.2,2.9)--(6.502682729332935,4.9998882660912045)); | draw((10.2,2.9)--(6.502682729332935,4.9998882660912045)); | ||
draw((10.2,2.9)--(11.841974292674951,3.8635573752955428)); | draw((10.2,2.9)--(11.841974292674951,3.8635573752955428)); | ||
− | label("$ | + | label("$x+y+z = a$",(7.5043433217971725,-1.565215213000298),SE*labelscalefactor); |
/* dots and labels */ | /* dots and labels */ | ||
dot((3.22,-0.78),dotstyle); | dot((3.22,-0.78),dotstyle); | ||
Line 40: | Line 40: | ||
dot((10.22570196184074,-0.7304021100046675),linewidth(3.pt) + dotstyle); | dot((10.22570196184074,-0.7304021100046675),linewidth(3.pt) + dotstyle); | ||
label("$C'$", (10.3,-0.62), NE * labelscalefactor); | label("$C'$", (10.3,-0.62), NE * labelscalefactor); | ||
− | label("$ | + | label("$x$", (9.88,1.1), NE * labelscalefactor); |
− | label("$ | + | label("$z$", (8.5,4.24), NE * labelscalefactor); |
− | label("$ | + | label("$y$", (11.18,3.12), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
/* end of picture */</asy> | /* end of picture */</asy> |
Revision as of 19:16, 16 May 2016
The Viviani's Theorem states that for an equilateral triangle, the sum of the altitudes from any point in the triangle is equal to the altitude from a vertex of the triangle to the other side.
Proof
Let be an equilateral triangle and be a point inside the triangle. We label the altitudes from to each of sides , and , and respectively. Since is equilateral, we can say that . Therefore, , and . Since the area of a triangle is the product of its base and altitude, we also have . However, the area of can also be expressed as . Therefore, , so , which means the sum of the altitudes from any point within the triangle is equal to the altitude from the vertex of a triangle.
Problem
This article is a stub. Help us out by expanding it.