Difference between revisions of "2006 AIME I Problems/Problem 1"
m (2006 AIME I Problem 1 moved to 2006 AIME I Problems/Problem 1) |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | From the problem statement, we construct the following diagram: <center>[[Image:Aime06i.1.PNG]]</center> | |
− | + | Using the [[Pythagorean Theorem]]: | |
− | <math> (AC)^2 = (AB)^2 + (BC)^2 </math> | + | <center><math> (AD)^2 = (AC)^2 + (CD)^2 </math></center> |
+ | |||
+ | <center><math> (AC)^2 = (AB)^2 + (BC)^2 </math></center> | ||
Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>: | Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>: | ||
− | <math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math> | + | <center><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></center> |
Plugging in the given information: | Plugging in the given information: | ||
− | <math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math> | + | <center><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></center> |
− | <math> (AD)^2 = 961 </math> | + | <center><math> (AD)^2 = 961 </math></center> |
− | <math> (AD)= 31 </math> | + | <center><math> (AD)= 31 </math></center> |
So the perimeter is: | So the perimeter is: | ||
Line 26: | Line 28: | ||
== See also == | == See also == | ||
* [[2006 AIME I Problems]] | * [[2006 AIME I Problems]] | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] |
Revision as of 15:58, 18 July 2006
Problem
In quadrilateral is a right angle, diagonal is perpendicular to and Find the perimeter of
Solution
From the problem statement, we construct the following diagram:
Using the Pythagorean Theorem:
Substituting for :
Plugging in the given information:
So the perimeter is: