Difference between revisions of "1968 IMO Problems/Problem 5"

(Created page with "==Problem 5== Let <math>f</math> be a real-valued function defined for all real numbers <math>x</math> such that, for some positive constant <math>a</math>, the equation <cmath>...")
 
m
Line 20: Line 20:
  
 
(b) <math>f(x) = 1</math> when <math>2n\le x < 2n+1</math> for some integer <math>n</math>, and <math>f(x)=\frac{1}{2}</math> when <math>2n+1\le x < 2n+2</math> for some integer <math>n</math>.
 
(b) <math>f(x) = 1</math> when <math>2n\le x < 2n+1</math> for some integer <math>n</math>, and <math>f(x)=\frac{1}{2}</math> when <math>2n+1\le x < 2n+2</math> for some integer <math>n</math>.
 +
 +
[[Category:Olympiad Algebra Problems]]
 +
[[Category:Functional Equation Problems]]

Revision as of 07:37, 19 July 2016

Problem 5

Let $f$ be a real-valued function defined for all real numbers $x$ such that, for some positive constant $a$, the equation \[f(x + a) = \frac{1}{2} + \sqrt{f(x) - (f(x))^2}\] holds for all $x$.

(a) Prove that the function $f$ is periodic (i.e., there exists a positive number $b$ such that $f(x + b) = f(x)$ for all $x$).

(b) For $a = 1$, give an example of a non-constant function with the required properties.

Solution

(a) Since \[f(x+a) \ge \frac{1}{2}\] is true for any $x$, and \[f(x+a)(1-f(x+a)) = \frac{1}{4} - (f(x)-(f(x))^2) = (\frac{1}{2}-f(x))^2\]

We have: \[f(x+2a) = \frac{1}{2} + \sqrt{(\frac{1}{2}-f(x))^2} = \frac{1}{2} + (f(x) - \frac{1}{2}) = f(x)\] Therefore $f$ is periodic, with $2a>0$ as a period.

(b) $f(x) = 1$ when $2n\le x < 2n+1$ for some integer $n$, and $f(x)=\frac{1}{2}$ when $2n+1\le x < 2n+2$ for some integer $n$.