Difference between revisions of "2007 iTest Problems/Problem 17"

(Problem)
(Problem)
Line 2: Line 2:
  
 
If <math>x</math> and <math>y</math> are acute angles such that <math>x+y=\frac{\pi}{4}</math> and <math>\tan{y}=\frac{1}{6}</math>, find the value of <math>\tan{x}</math>.
 
If <math>x</math> and <math>y</math> are acute angles such that <math>x+y=\frac{\pi}{4}</math> and <math>\tan{y}=\frac{1}{6}</math>, find the value of <math>\tan{x}</math>.
 
<math> \text{(A) }\frac{37\sqrt{2}-18}{71}\qquad
 
\text{(B) }\frac{35\sqrt{2}-6}{71}\qquad
 
\text{(C) }\frac{35\sqrt{3}+12}{33}\qquad
 
\text{(D) }\frac{37\sqrt{3}+24}{33}\qquad
 
\text{(E) }1\qquad
 
\text{(F) }\frac{5}{7}\qquad \\ </math>
 
 
<math>\text{(G) }\frac{3}{7}\qquad
 
\text{(H) }6\qquad
 
\text{(I) }\frac{1}{6}\qquad
 
\text{(J) }\frac{1}{2}\qquad
 
\text{(K) }\frac{6}{7}\qquad
 
\text{(L) }\frac{4}{7}\qquad \\ </math>
 
 
<math>\text{(M) }\sqrt{3}\qquad
 
\text{(N) }\frac{\sqrt{3}}{3}\qquad
 
\text{(O) }\frac{5}{6}\qquad
 
\text{(P) }\frac{2}{3}\qquad
 
\text{(Q) }\frac{1}{2007}\qquad\\ </math>
 
  
 
== Solution ==
 
== Solution ==

Revision as of 05:12, 30 July 2016

Problem

If $x$ and $y$ are acute angles such that $x+y=\frac{\pi}{4}$ and $\tan{y}=\frac{1}{6}$, find the value of $\tan{x}$.

Solution