Difference between revisions of "1977 Canadian MO Problems/Problem 1"

 
(Solution)
Line 5: Line 5:
 
Directly plugging <math>\displaystyle a</math> and <math>\displaystyle b</math> into the function, <math>\displaystyle 4a^2+4a=b^2+b.</math> We now have a quadratic in <math>\displaystyle a.</math>
 
Directly plugging <math>\displaystyle a</math> and <math>\displaystyle b</math> into the function, <math>\displaystyle 4a^2+4a=b^2+b.</math> We now have a quadratic in <math>\displaystyle a.</math>
  
Applying the quadratic formula, <center><math> \displaystyle a=\frac{-1\pm \sqrt{b^2+b+1}}{2}. </math> </center>
+
Applying the quadratic formula, <math> \displaystyle a=\frac{-1\pm \sqrt{b^2+b+1}}{2}. </math>
  
 
Because, <math>\displaystyle b^2< b^2+b+1 <(b+1)^2,</math> the quantity <math>\displaystyle b^2+b+1</math> cannot be a perfect square when <math>\displaystyle b</math> is an integer. Hence, when <math>\displaystyle b</math> is a positive integer, <math>\displaystyle a</math> cannot be.
 
Because, <math>\displaystyle b^2< b^2+b+1 <(b+1)^2,</math> the quantity <math>\displaystyle b^2+b+1</math> cannot be a perfect square when <math>\displaystyle b</math> is an integer. Hence, when <math>\displaystyle b</math> is a positive integer, <math>\displaystyle a</math> cannot be.
  
 
== See also ==
 
== See also ==

Revision as of 01:01, 22 July 2006

Problem

If $\displaystyle f(x)=x^2+x,$ prove that the equation $\displaystyle 4f(a)=f(b)$ has no solutions in positive integers $\displaystyle a$ and $\displaystyle b.$

Solution

Directly plugging $\displaystyle a$ and $\displaystyle b$ into the function, $\displaystyle 4a^2+4a=b^2+b.$ We now have a quadratic in $\displaystyle a.$

Applying the quadratic formula, $\displaystyle a=\frac{-1\pm \sqrt{b^2+b+1}}{2}.$

Because, $\displaystyle b^2< b^2+b+1 <(b+1)^2,$ the quantity $\displaystyle b^2+b+1$ cannot be a perfect square when $\displaystyle b$ is an integer. Hence, when $\displaystyle b$ is a positive integer, $\displaystyle a$ cannot be.

See also