Difference between revisions of "2000 AMC 8 Problems/Problem 21"

m (Solution)
Line 21: Line 21:
 
<math>E(2) = \frac{1}{2}\cdot\frac{1}{2} = \frac{1}{4}</math>
 
<math>E(2) = \frac{1}{2}\cdot\frac{1}{2} = \frac{1}{4}</math>
  
The probability that Keiko gets <math>0</math> heads and Ephriam gets <math>0</math> heads is <math>K(0)\cdot E(0)</math>.  Simiarly for <math>1</math> head and <math>2</math> heads.  Thus, we have:
+
The probability that Keiko gets <math>0</math> heads and Ephriam gets <math>0</math> heads is <math>K(0)\cdot E(0)</math>.  Similarly for <math>1</math> head and <math>2</math> heads.  Thus, we have:
  
 
<math>P = K(0)\cdot E(0) + K(1)\cdot E(1) + K(2)\cdot E(2)</math>
 
<math>P = K(0)\cdot E(0) + K(1)\cdot E(1) + K(2)\cdot E(2)</math>

Revision as of 15:00, 11 November 2016

Problem

Keiko tosses one penny and Ephraim tosses two pennies. The probability that Ephraim gets the same number of heads that Keiko gets is

$\text{(A)}\ \frac{1}{4}\qquad\text{(B)}\ \frac{3}{8}\qquad\text{(C)}\ \frac{1}{2}\qquad\text{(D)}\ \frac{2}{3}\qquad\text{(E)}\ \frac{3}{4}$

Solution

Let $K(n)$ be the probability that Keiko gets $n$ heads, and let $E(n)$ be the probability that Ephriam gets $n$ heads.

$K(0) = \frac{1}{2}$

$K(1) = \frac{1}{2}$

$K(2) = 0$ (Keiko only has one penny!)

$E(0) = \frac{1}{2}\cdot\frac{1}{2} = \frac{1}{4}$

$E(1) = \frac{1}{2}\cdot\frac{1}{2} + \frac{1}{2}\cdot\frac{1}{2} = 2\cdot\frac{1}{4} = \frac{1}{2}$ (because Ephraim can get HT or TH)

$E(2) = \frac{1}{2}\cdot\frac{1}{2} = \frac{1}{4}$

The probability that Keiko gets $0$ heads and Ephriam gets $0$ heads is $K(0)\cdot E(0)$. Similarly for $1$ head and $2$ heads. Thus, we have:

$P = K(0)\cdot E(0) + K(1)\cdot E(1) + K(2)\cdot E(2)$

$P = \frac{1}{2}\cdot\frac{1}{4} + \frac{1}{2}\cdot\frac{1}{2} + 0$

$P = \frac{3}{8}$

Thus the answer is $\boxed{B}$.

See Also

2000 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png