Difference between revisions of "2017 AMC 10A Problems/Problem 17"
(Created page with "==Problem 17== Distinct points <math>P</math>, <math>Q</math>, <math>R</math>, <math>S</math> lie on the circle <math>x^2+y^2=25</math> and have integer coordinates. The dista...") |
(→Problem 17) |
||
Line 1: | Line 1: | ||
− | |||
Distinct points <math>P</math>, <math>Q</math>, <math>R</math>, <math>S</math> lie on the circle <math>x^2+y^2=25</math> and have integer coordinates. The distances <math>PQ</math> and <math>RS</math> are irrational numbers. What is the greatest possible value of the ratio <math>\frac{PQ}{RS}</math>? | Distinct points <math>P</math>, <math>Q</math>, <math>R</math>, <math>S</math> lie on the circle <math>x^2+y^2=25</math> and have integer coordinates. The distances <math>PQ</math> and <math>RS</math> are irrational numbers. What is the greatest possible value of the ratio <math>\frac{PQ}{RS}</math>? |
Revision as of 17:00, 8 February 2017
Distinct points , , , lie on the circle and have integer coordinates. The distances and are irrational numbers. What is the greatest possible value of the ratio ?