Difference between revisions of "2017 AMC 12B Problems/Problem 18"
m |
|||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | + | ||
+ | [asy] | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ | ||
+ | import graph; size(8.865514650638614cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -6.36927122464312, xmax = 11.361758076634109, ymin = -3.789601803155515, ymax = 7.420015026296013; /* image dimensions */ | ||
+ | |||
+ | |||
+ | draw((-2.,0.)--(0.6486486486486486,1.8918918918918919)--(2.,0.)--cycle); | ||
+ | /* draw figures */ | ||
+ | draw(circle((0.,0.), 2.)); | ||
+ | draw((-2.,0.)--(5.,5.)); | ||
+ | draw((5.,5.)--(5.,0.)); | ||
+ | draw((5.,0.)--(-2.,0.)); | ||
+ | draw((-2.,0.)--(0.6486486486486486,1.8918918918918919)); | ||
+ | draw((0.6486486486486486,1.8918918918918919)--(2.,0.)); | ||
+ | draw((2.,0.)--(-2.,0.)); | ||
+ | draw((2.,0.)--(5.,5.)); | ||
+ | draw((0.,0.)--(5.,5.)); | ||
+ | /* dots and labels */ | ||
+ | dot((0.,0.),dotstyle); | ||
+ | label("<math>O</math>", (-0.10330578512396349,-0.39365890308038826), NE * labelscalefactor); | ||
+ | dot((-2.,0.),dotstyle); | ||
+ | label("<math>A</math>", (-2.2370398196844437,-0.42371149511645134), NE * labelscalefactor); | ||
+ | dot((2.,0.),dotstyle); | ||
+ | label("<math>B</math>", (2.045454545454548,-0.36360631104432517), NE * labelscalefactor); | ||
+ | dot((5.,0.),dotstyle); | ||
+ | label("<math>D</math>", (4.900450788880542,-0.42371149511645134), NE * labelscalefactor); | ||
+ | dot((5.,5.),dotstyle); | ||
+ | label("<math>E</math>", (5.06574004507889,5.15104432757325), NE * labelscalefactor); | ||
+ | dot((0.6486486486486486,1.8918918918918919),linewidth(3.pt) + dotstyle); | ||
+ | label("<math>C</math>", (0.48271975957926694,2.100706235912847), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | [/asy] | ||
+ | |||
+ | Let <math>O</math> be the center of the circle. Note that <math>EC + CA = EA = \sqrt{AD^2 + DE^2} = \sqrt{(2+2+3)^2 + 5^2} = \sqrt{74}</math>. However, by Power of a Point, <math>(EC)(EC + CA) = EO^2 - R^2 = (2+3)^2 + 5^2 - 2^2 = 25 + 25 - 4 = 46 \implies EC = \frac{46}{\sqrt{74}}</math>, so <math>AC = \sqrt{74} - \frac{46}{\sqrt{74}} = \frac{28}{\sqrt{74}}</math>. Now <math>BC = \sqrt{AB^2 - AC^2} = \sqrt{4^2 - \frac{28^2}{74}} = \sqrt{\frac{16 \cdot 74 - 28^2}{74}} = \sqrt{\frac{1184 - 784}{74}} = \frac{20}{\sqrt{74}}</math>. Since <math>\angle ACB = 90^{\circ}, [ABC] = \frac{1}{2} \cdot BC \cdot AC = \frac{1}{2} \cdot \frac{20}{\sqrt{74}} \cdot \frac{28}{\sqrt{74}} = \boxed{\textbf{(D)}\ \frac{140}{37}}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | {{AMC12 box|year=2017|ab=B|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:48, 16 February 2017
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.865514650638614cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.36927122464312, xmax = 11.361758076634109, ymin = -3.789601803155515, ymax = 7.420015026296013; /* image dimensions */
draw((-2.,0.)--(0.6486486486486486,1.8918918918918919)--(2.,0.)--cycle);
/* draw figures */
draw(circle((0.,0.), 2.)); draw((-2.,0.)--(5.,5.)); draw((5.,5.)--(5.,0.)); draw((5.,0.)--(-2.,0.)); draw((-2.,0.)--(0.6486486486486486,1.8918918918918919)); draw((0.6486486486486486,1.8918918918918919)--(2.,0.)); draw((2.,0.)--(-2.,0.)); draw((2.,0.)--(5.,5.)); draw((0.,0.)--(5.,5.));
/* dots and labels */
dot((0.,0.),dotstyle); label("", (-0.10330578512396349,-0.39365890308038826), NE * labelscalefactor); dot((-2.,0.),dotstyle); label("", (-2.2370398196844437,-0.42371149511645134), NE * labelscalefactor); dot((2.,0.),dotstyle); label("", (2.045454545454548,-0.36360631104432517), NE * labelscalefactor); dot((5.,0.),dotstyle); label("", (4.900450788880542,-0.42371149511645134), NE * labelscalefactor); dot((5.,5.),dotstyle); label("", (5.06574004507889,5.15104432757325), NE * labelscalefactor); dot((0.6486486486486486,1.8918918918918919),linewidth(3.pt) + dotstyle); label("", (0.48271975957926694,2.100706235912847), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
Let be the center of the circle. Note that . However, by Power of a Point, , so . Now . Since .
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.