Difference between revisions of "2017 USAMO Problems/Problem 1"
Mathcounts46 (talk | contribs) (→Problem) |
(Added second solution) |
||
Line 3: | Line 3: | ||
Prove that there are infinitely many distinct pairs <math>(a,b)</math> of relatively prime positive integers <math>a>1</math> and <math>b>1</math> such that <math>a^b+b^a</math> is divisible by <math>a+b</math>. | Prove that there are infinitely many distinct pairs <math>(a,b)</math> of relatively prime positive integers <math>a>1</math> and <math>b>1</math> such that <math>a^b+b^a</math> is divisible by <math>a+b</math>. | ||
− | == Solution == | + | == Solution 1 == |
Let <math>n=a+b</math>. Since <math>gcd(a,b)=1</math>, we know <math>gcd(a,n)=1</math>. We can rewrite the condition as | Let <math>n=a+b</math>. Since <math>gcd(a,b)=1</math>, we know <math>gcd(a,n)=1</math>. We can rewrite the condition as | ||
Line 22: | Line 22: | ||
Therefore, for all primes <math>p \equiv 1\mod{4}</math>, the pair <math>\left(\frac{3p-1}{2},\frac{p+1}{2}\right)</math> satisfies the criteria, so infinitely many such pairs exist. | Therefore, for all primes <math>p \equiv 1\mod{4}</math>, the pair <math>\left(\frac{3p-1}{2},\frac{p+1}{2}\right)</math> satisfies the criteria, so infinitely many such pairs exist. | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | Take <math>a=2n-1, b=2n+1, n\geq 2</math>. It is obvious (use the Euclidean Algorithm, if you like), that <math>\gcd(a,b)=1</math>, and that <math>a,b>1</math>. | ||
+ | |||
+ | Note that | ||
+ | |||
+ | <cmath>a^2 = 4n^2-4n+1 \equiv 1 (\bmod 4n)</cmath> | ||
+ | |||
+ | <cmath>b^2 = 4n^2+4n+1 \equiv 1 (\bmod 4n)</cmath> | ||
+ | |||
+ | So | ||
+ | |||
+ | <cmath>a^b+b^a = a(a^2)^n+b(b^2)^{n-1} \equiv a\cdot 1^n + b\cdot 1^{n-1} \equiv a+b = 4n \equiv 0 (\bmod 4n)</cmath> | ||
+ | |||
+ | Since <math>a+b=4n</math>, all such pairs work, and we are done. |
Revision as of 21:05, 20 April 2017
Problem
Prove that there are infinitely many distinct pairs of relatively prime positive integers and such that is divisible by .
Solution 1
Let . Since , we know . We can rewrite the condition as
Assume is odd. Since we need to prove an infinite number of pairs exist, it suffices to show that infinitely many pairs with odd exist.
Then we have
We know by Euler's theorem that , so if we will have the required condition.
This means . Let where is a prime, . Then , so Note the condition that guarantees that is odd, since
This makes . Now we need to show that and are relatively prime. If and have a common factor , then we know . Therefore or . We know , so and . We also know is odd, so . This means the only common factor and have is , so and are relatively prime.
Therefore, for all primes , the pair satisfies the criteria, so infinitely many such pairs exist.
Solution 2
Take . It is obvious (use the Euclidean Algorithm, if you like), that , and that .
Note that
So
Since , all such pairs work, and we are done.